首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
R2R3 Myb genes are widely distributed in the higher plants and comprise one of the largest known families of regulatory proteins. Here, we provide an evolutionary framework that helps explain the origin of the plant-specific R2R3 Myb genes from widely distributed R1R2R3 Myb genes, through a series of well-established steps. To understand the routes of sequence divergence that followed Myb gene duplication, we supplemented the information available on recently duplicated maize (Zea mays) R2R3 Myb genes (C1/Pl1 and P1/P2) by cloning and characterizing ZmMyb-IF35 and ZmMyb-IF25. These two genes correspond to the recently expanded P-to-A group of maize R2R3 Myb genes. Although the origins of C1/Pl1 and ZmMyb-IF35/ZmMyb-IF25 are associated with the segmental allotetraploid origin of the maize genome, other gene duplication events also shaped the P-to-A clade. Our analyses indicate that some recently duplicated Myb gene pairs display substantial differences in the numbers of synonymous substitutions that have accumulated in the conserved MYB domain and the divergent C-terminal regions. Thus, differences in the accumulation of substitutions during evolution can explain in part the rapid divergence of C-terminal regions for these proteins in some cases. Contrary to previous studies, we show that the divergent C termini of these R2R3 MYB proteins are subject to purifying selection. Our results provide an in-depth analysis of the sequence divergence for some recently duplicated R2R3 Myb genes, yielding important information on general patterns of evolution for this large family of plant regulatory genes.  相似文献   

7.
The c-myb proto-oncogene product (c-Myb) regulates proliferation and differentiation of hematopoietic cells. Recently we have shown that c-Myb is degraded in response to Wnt-1 stimulation via a pathway involving TAK1 (TGF-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). NLK and HIPK2 bind directly to c-Myb and phosphorylate c-Myb at multiple sites, inducing its ubiquitination and proteasome-dependent degradation. The mammalian myb gene family contains two members in addition to c-myb, A-myb, and B-myb. Here, we report that the Wnt-NLK pathway also inhibits A-Myb activity, but by a different mechanism. As in the case of c-Myb, both NLK and HIPK2 bound directly to A-Myb and inhibited its activity. NLK phosphorylated A-Myb, but did not induce A-Myb degradation. Overexpression of NLK inhibited the association between A-Myb and the coactivator CBP, thus, blocking A-Myb-induced trans-activation. The kinase activity of NLK is required for the efficient inhibition of the association between A-Myb and CBP, although the kinase-negative form of NLK also partly inhibits the interaction between A-Myb and CBP. Furthermore, NLK induced the methylation of histone H3 at lysine-9 at A-Myb-bound promoter regions. Thus, the Wnt-NLK pathway inhibits the activity of each Myb family member by different mechanisms.  相似文献   

8.
9.
Torgerson DG  Singh RS 《Genetics》2004,168(3):1421-1432
Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Evidence suggests that duplicated genes are retained at a much higher rate than originally thought and that functional divergence of gene copies is a major factor promoting their retention in the genome. We find that two Drosophila testes-specific alpha4 proteasome subunit genes (alpha4-t1 and alpha4-t2) have a higher polymorphism within species and are significantly more diverged between species than the somatic alpha4 gene. Our data suggest that following gene duplication, the alpha4-t1 gene experienced relaxed selective constraints, whereas the alpha4-t2 gene experienced positive selection acting on several codons. We report significant heterogeneity in evolutionary rates among all three paralogs at homologous codons, indicating that functional divergence has coincided with genic divergence. Reproductive subfunctionalization may allow for a more rapid evolution of reproductive traits and a greater specialization of testes function. Our data add to the increasing evidence that duplicated genes experience lower selective constraints and in some cases positive selection following duplication. Newly duplicated genes that are freer from selective constraints may provide a mechanism for developing new interactions and a pathway for the evolution of new genes.  相似文献   

10.
Paralogous genes from several families were found in four human chromosome regions (4p16, 5q33-35, 8p12-21, and 10q24-26), suggesting that their common ancestral region underwent several rounds of large- scale duplication. Searches in the EMBL databases, followed by phylogenetic analyses, showed that cognates (orthologs) of human duplicated genes can be found in other vertebrates, including bony fishes. In contrast, within each family, only one gene showing the same high degree of similarity with all the duplicated mammalian genes was found in nonvertebrates (echinoderms, insects, nematodes). This indicates that large-scale duplications occurred after the echinoderms/chordates split and before the bony vertebrate radiation. It has been suggested that two rounds of gene duplication occurred in the vertebrate lineage after the separation of Amphioxus and craniate (vertebrates + Myxini) ancestors. Before these duplications, the genes that have led to the families of paralogous genes in vertebrates must have been physically linked in the craniate ancestor. Linkage of some of these genes can be found in the Drosophila melanogaster and Caenorhabditis elegans genomes, suggesting that they were linked in the triploblast Metazoa ancestor.   相似文献   

11.
12.
13.
Plant conserved non-coding sequences and paralogue evolution   总被引:1,自引:0,他引:1  
Genome duplication is a powerful evolutionary force and is arguably most prominent in plants, where several ancient whole-genome duplication events have been documented. Models of gene evolution predict that functional divergence between duplicates (subfunctionalization) is caused by the loss of regulatory elements. Studies of conserved non-coding sequences (CNSs), which are putative regulatory elements, indicate that plants have far fewer CNSs per gene than mammals, suggesting that plants have less complex regulatory mechanisms. Furthermore, a recent study of a duplicated gene pair in maize suggests that CNSs are lost in a complementary fashion, perhaps driving subfunctionalization. If subfunctionalization is common, one expects duplicate genes to diverge in expression; recent microarray analyses in Arabidopsis thalinia suggest that this is the case. Plant genomes are relatively complex on a genomic level because of the prevalence of whole-genome duplication and, paradoxically, subfunctionalization after duplication can lead to relatively simple regulatory regions on a per gene basis.  相似文献   

14.
The oncoprotein v-Myb of avian myeloblastosis virus (AMV) transforms myelomonocytic cells by deregulating specific target genes. Previous work has shown that the oncogenic potential of v-Myb was activated by truncation of N- and C-terminal sequences of c-Myb and was further increased by amino acid substitutions in the DNA-binding domain and other parts of the protein. We have analyzed the activation of the chicken lysozyme gene which is strongly activated by c-Myb but not by its oncogenic counterpart v-Myb. We report that Myb acts on two different cis-regulatory elements, the promoter and an enhancer located upstream of the gene. Interestingly, the activation of the enhancer was abolished by the oncogenic amino acid substitutions. We demonstrated that a single Myb-binding site is responsible for the activation of the lysozyme enhancer by Myb and showed that the v-Myb protein of AMV was unable to bind to this site. Our data demonstrate for the first time that oncogenic activation of Myb alters its DNA-binding specificity at a physiological Myb target gene.  相似文献   

15.
Gene duplication events are followed by divergence of initially identical gene copies, due to the subsequent accumulation of mutations. These mutations tend to be degenerative and may lead to either nonfunctionalization or subfunctionalization of the gene copies. Here we report the molecular characterization of a 220-kb genomic DNA fragment from human 2q37.1, in which a double duplication and a partial triplication event has taken place. As a result, this region contains four copies of alkaline phosphatase (P), four copies of the ECEL1 gene (X), two copies of a newly identified gene (N), and two copies of a cholinergic receptor subunit (R), in the order N-P-X-P-X-P-X-N-P-X-R-R. While three of the four ECEL1 copies, one copy of the phosphatase gene and one copy of the newly identified gene have lost their function, three phosphatase gene copies and the two receptor subunits are still functionally active and thus may provide an example for subfunctionalization of duplicated genes.  相似文献   

16.
17.
18.

Background  

The duplication-degeneration-complementation (DDC) model has been proposed as an explanation for the unexpectedly high retention of duplicate genes. The hypothesis proposes that, following gene duplication, the two gene copies degenerate to perform complementary functions that jointly match that of the single ancestral gene, a process also known as subfunctionalization. We distinguish between subfunctionalization at the regulatory level and at the product level (e.g within temporal or spatial expression domains).  相似文献   

19.
Two cDNAs encoding Myb-related proteins have been cloned from Xenopus laevis and they have been termed Xmyb1 and Xmyb2. The Xmyb1 cDNA clone codes for an open reading frame of 733 amino acids and exhibits a high degree of similarity over the entire predicted protein sequence with the human B-Myb protein. Xmyb2 is a partial cDNA clone encoding three copies of amino-terminal tandem repeat elements typical for the Myb DNA-binding domain. The predicted protein sequence is most closely related to the human A-Myb gene product. In vitro translation of two deletion mutants of Xmyb1, truncated in the 3'-portion of the open reading frame, results in protein products which cross-react with polyvalent as well as monoclonal antibodies directed against the human c-Myb protein. The same two XMyb1 proteins, which both contain the complete set of aminoterminal repeats, specifically bind to the c-Myb-specific DNA binding sequence as evidenced by electrophoretic mobility shift analysis in vitro. RNA expression profiles of Xmyb1 and -2 are very different from each other; Xmyb1 is present throughout oogenesis and early Xenopus embryogenesis; in adult tissue it is primarily detected in blood. In contrast, Xmyb2 is expressed at only very low levels during oogenesis, not detectable in embryonic RNA preparations, and in adult tissue it is predominantly expressed in testis, with only a very low level seen in blood.  相似文献   

20.
Extended comparison of gene sequences found on homeologous soybean Bacterial Artificial Chromosomes to Medicago truncatula and Arabidopsis thaliana genomic sequences demonstrated a network of synteny within conserved regions interrupted by gene addition and/or deletions. Consolidation of gene order among all 3 species provides a picture of ancestral gene order. The observation supports a genome history of fractionation resulting from gene loss/addition and rearrangement. In all 3 species, clusters of N-hydroxycinnamoyl/benzoyltransferase genes were identified in tandemly duplicated clusters. Parsimony-based gene trees suggest that the genes within the arrays have independently undergone tandem duplication in each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号