首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The enzymatic synthesis of phenolic lipids by lipase-catalyzed transesterification of dihydrocaffeic acid (DHCA) with fish liver oil was investigated in a selected organic solvent medium. These synthesized phenolic lipids have potential use as nutraceutical products. Using a molar ratio of 1:8 DHCA to fish liver oil in hexane:2-butanone mixtures of 75:25 and 85:15 (v/v), the lipase-catalyzed reaction resulted in maximum conversion of 55.8 and 65.4%, respectively. The maximum conversion of phenolic monoacylglycerols in hexane:2-butanone mixture of 75:25 and 85:15 (v/v) was 40.3 and 37.7%, respectively; using the same solvent mixtures, the conversions of the phenolic diacylglycerol were 15.8 and 36.8%, respectively. Hexane:2-butanone mixture of 75:25 (v/v) was, therefore, the best organic solvent mixture for the production of phenolic monoacylglycerols, while that of 85:15 (v/v) was best for the production of phenolic diacylglycerols. The phenolic lipids produced from the fish liver oil and DHCA demonstrated antioxidant property as indicated by its free radical scavenging capacity.  相似文献   

2.
The enzymatic synthesis of phenolic lipids by lipase-catalyzed transesterification of dihydrocaffeic acid (DHCA) with fish liver oil was investigated in a selected organic solvent medium. These synthesized phenolic lipids have potential use as nutraceutical products. Using a molar ratio of 1:8 DHCA to fish liver oil in hexane:2-butanone mixtures of 75:25 and 85:15 (v/v), the lipase-catalyzed reaction resulted in maximum conversion of 55.8 and 65.4%, respectively. The maximum conversion of phenolic monoacylglycerols in hexane:2-butanone mixture of 75:25 and 85:15 (v/v) was 40.3 and 37.7%, respectively; using the same solvent mixtures, the conversions of the phenolic diacylglycerol were 15.8 and 36.8%, respectively. Hexane:2-butanone mixture of 75:25 (v/v) was, therefore, the best organic solvent mixture for the production of phenolic monoacylglycerols, while that of 85:15 (v/v) was best for the production of phenolic diacylglycerols. The phenolic lipids produced from the fish liver oil and DHCA demonstrated antioxidant property as indicated by its free radical scavenging capacity.  相似文献   

3.
Lipase-catalyzed acidolysis reaction of fish liver oil with dihydroxyphenylacetic acid (DHPA) was investigated in terms of enzyme specificity as well as the effects of enzyme concentration, molar substrate ratio and organic solvent mixture on the bioconversion yield. The highest bioconversion yield of 83% was obtained when Novozym 435 was used as biocatalyst in a hexane:2-butanone mixture of 75:25 (v/v) at a fish liver oil to DHPA substrate molar ratio of 4:1; however, lower bioconversion yield (15%) was obtained when Lipozyme IM 20 was used. The bioconversion yield of phenolic monoacylglycerols (MAGs) increased from 11 to 70% when the ratio of the hexane/2-butanone reaction medium was changed from 85:15 to 75:25 (v/v), whereas that of phenolic diacylglycerols (DAGs) remained relatively unchanged (13–16%). The results also showed that the acidolysis reaction resulted in an increase of C20:5 ω-3 and C22:6 ω-3 proportions from 11.5 and 20.2% in the original fish liver oil to 22.6–27.1 and 22.8–23.1% in the phenolic lipids, respectively. The radical scavenging ability of phenolic lipids was determined to be about half-time lower than that of α-tocopherol.  相似文献   

4.
Structured phenolic lipids (PLs) were obtained by lipase-catalyzed transesterification of flaxseed oil, in a solvent-free system (SFS), with selected phenolic acids, including hydroxylated and/or methoxylated derivatives of cinnamic, phenyl acetic and benzoic acids. A bioconversion yield of 65% was obtained for the transesterification of flaxseed oil with 3,4-dihydroxyphenyl acetic acid (DHPA). However, the effect of the chemical structure of phenolic acids on the transesterification of flaxseed oil in SFS was of less magnitude as compared to that in organic solvent system (OSS). Using DHPA, the APCI-MS analysis confirmed the synthesis of monolinolenyl, dilinolenyl, linoleyl linolenyl and oleyl linolenyl dihydroxyphenyl acetates as phenolic lipids. A significant increase in the enzymatic activity from 200 to 270 nmol of PLs/g solid enzyme/min was obtained upon the addition of the non-ionic surfactant Span 65. However, upon the addition of the anionic surfactant, sodium bis-2-ethylhexyl sulfosuccinate (AOT), and the cationic one, hexadecyltrimethylammonium bromide (CTAB), the enzymatic activity was decreased slightly from 200 to 192 and 190 nmol of PLs/g solid enzyme/min, respectively. The results also showed that the increase in DHPA concentration from 20 to 60 mM resulted in a significant increase in the volumetric productivity (P(V)) from 1.61 to 4.74 mg PLs per mL reaction mixture per day.  相似文献   

5.
The synthesis of structured phenolic lipids by lipase-catalyzed transesterification of selected phenolic acids, including p-hydroxyphenyl acetic, p-coumaric, sinapic, ferulic and 3,4-dihydroxybenzoic acids, with triolein was investigated. The highest enzymatic activity (248 nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (62%) was obtained for the transesterification of p-hydroxyphenyl acetic acid with triolein. In addition, the transesterification of p-coumaric with triolein resulted in a higher enzymatic activity (87 nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (46%) than those obtained for the transesterfication of ferulic and sinapic acids. The results also showed that using p-hydroxyphenyl acetic, p-coumaric and ferulic acids as substrate, the maximum bioconversion of phenolic monoacylglycerols was close to that of phenolic diacylglycerols. Although p-coumaric acid had very low radical scavenging activity (2%) compared to that of ferulic acid (62%), the p-coumaroylated lipids demonstrated a higher scavenging potency (16%) than that of the feruloylated one (10%).  相似文献   

6.
The enzymatic synthesis of phenolic lipids (PLs) by transesterification of flaxseed oil with 3,4-dihydroxyphenyl acetic acid (DHPA) was investigated in solvent-free medium (SFM), using Novozym 435 from Candida antarctica as the biocatalyst. The effects of selected reaction parameters, water activity (aw), enzyme concentration and agitation speed, were studied and optimized. Increasing the aw of the reaction mixture from 0.18 to 0.38 resulted in a significant increase in the bioconversion yield from 62 to 77%. APCI–MS analysis confirmed the formation of six 3,4-dihydroxyphenyl acetoylated lipids, which were monolinolenyl, dioleyl, dilinolenyl, linoleyl linolenyl, oleyl linolenyl and oleyl linoleyl dihydroxyphenyl acetates. The highest enzymatic activity (178 nmol of PLs/g solid enzyme/min) was obtained using 40 mg of solid enzyme (400 PLU)/mL at agitation speed 150 rpm. Using the optimized conditions, the phenolic lipids showed a high relative proportion of linolenic acid (C18:3 n?3) that increased from 57% in the flaxseed oil to 75 and 64% in the produced phenolic mono- and diacylglycerols, respectively. In addition, the synthesized phenolic lipids demonstrated a 7.2-fold lower radical scavenging activity than that of DHPA but half that of α-tocopherol.  相似文献   

7.
The synthesis of structured phenolic lipids by lipase-catalyzed transesterification of selected phenolic acids, including p-hydroxyphenyl acetic, p-coumaric, sinapic, ferulic and 3,4-dihydroxybenzoic acids, with triolein was investigated. The highest enzymatic activity (248?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (62%) was obtained for the transesterification of p-hydroxyphenyl acetic acid with triolein. In addition, the transesterification of p-coumaric with triolein resulted in a higher enzymatic activity (87?nmol esterified phenolic acid/g solid enzyme/min) and bioconversion (46%) than those obtained for the transesterfication of ferulic and sinapic acids. The results also showed that using p-hydroxyphenyl acetic, p-coumaric and ferulic acids as substrate, the maximum bioconversion of phenolic monoacylglycerols was close to that of phenolic diacylglycerols. Although p-coumaric acid had very low radical scavenging activity (2%) compared to that of ferulic acid (62%), the p-coumaroylated lipids demonstrated a higher scavenging potency (16%) than that of the feruloylated one (10%).  相似文献   

8.
Glycerolysis of palm and palm kernel oils were conducted using a commercial 1,3-specific lipase from Humicola lanuginosa (trade name: SP 398) as catalyst (500 units lipase g–1 oil) at 40°C and oil:glycerol (1:2 mol mol–1) in a solvent-free system. After 24 h, the glycerolysis products of palm and palm kernel oils consisted of 23% triacylglycerols, 18% monoacylglycerols, 38% diacylglycerols and 18% triacylglycerols, 31% monoacylglycerols, 42% diacylglycerols, respectively. The monoacylglycerol fraction of the glycerolysis product of palm oil was enriched in oleic acid. Palmitic acid content of the monoacylglycerol fraction of the same product was less than that of the original oil. Under the same conditions, monacylglycerol fraction of the palm kernel oil glycerolysis product was enriched in palmitic, stearic and oleic acids.  相似文献   

9.
Alcoholysis of blackcurrant oil mediated by Pseudomonas fluorescens lipase performed at 30°C in ethanol (96%, v/v) used both as a solvent and as a reactant. After 16 h, 95% of triacylglycerols present in the oil was converted into a mixture consisting of fatty acid ethyl esters, free fatty acids, monoacylglycerols and diacylglycerols. The highest amount of fatty acid ethyl esters (52%) was achieved after 8 h.  相似文献   

10.
海滨锦葵油制备生物柴油工艺条件优化   总被引:1,自引:0,他引:1  
以海滨锦葵油为原料制备生物柴油。通过单因素试验及正交试验研究了反应温度、催化剂用量、醇油摩尔比、反应时间、搅拌强度等因素对酯交换率的影响。结果表明,在试验范围内各影响因素对酯交换率作用的大小依次为:搅拌强度>催化剂用量>醇油摩尔比>反应时间>反应温度。海滨锦葵油制备生物柴油的最佳工艺参数为:搅拌强度为1800r.min-1,催化剂KOH用量为海滨锦葵油质量的1%,醇油摩尔比6/1,反应时间60min,反应温度65℃,在该工艺条件下,酯交换反应三次,酯交换率达到97.8%。  相似文献   

11.
Min JY  Lee EY 《Biotechnology letters》2011,33(9):1789-1796
Biodiesel [fatty acid methyl esters (FAMEs)] and glycerol carbonate were synthesized from corn oil and dimethyl carbonate (DMC) via transesterification using lipase (Novozyme 435) in solvent-free reaction in which excess DMC was used as the substrate and reaction medium. Glycerol carbonate was also simultaneously formed from DMC and glycerol. Conversions of FAMEs and glycerol carbonate were examined in batch reactions. The FAMEs and glycerol carbonate reached 94 and 62.5% from oil and DMC (molar ratio of 1:10) with 0.2% (v/v) water and 10% (w/w) Novozyme 435 (based on oil weight) at 60°C. When Novozyme 435 was washed with acetone after each reaction, more than 80% activity still remained after seven recycling.  相似文献   

12.
A central composite rotatable design was used to study the effect of methanol quantity, acid concentration and reaction time on the reduction of free fatty acids content of mahua oil during its pretreatment for making biodiesel. All the three variables significantly affected the acid value of the product, methanol being the most effective followed by reaction time and acid catalyst concentration. Using response surface methodology, a quadratic polynomial equation was obtained for acid value by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. The optimum combinations for reducing the acid level of mahua oil to less than 1% after pretreatment was 0.32 v/v methanol-to-oil ratio, 1.24% v/v H2SO4 catalyst and 1.26 h reaction time at 60 degrees C. After the pretreatment of mahua oil, transesterification reaction was carried out with 0.25 v/v methanol-to-oil ratio (6:1 molar ratio) and 0.7% w/v KOH as an alkaline catalyst to produce biodiesel. The fuel properties of mahua biodiesel so obtained complied the requirements of both the American and European standards for biodiesel.  相似文献   

13.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

14.
目前生物柴油因其环保和可再生利用资源的特性备受关注。多数生物柴油是通过甲醇和碱催化食用油得到的,而大量非食用油也可以制备生物柴油。本文报道用高含游离酸脂肪油快速高效低成本制备成其单酯的二步法工艺。先用1% H2SO4以少于1.5%量对甲醇和云南特产香果树(Lindera communis)籽的粗原料油以10∶1摩尔比组成的混合液酸催化酯化游离脂肪酸;之后再对醇和得到的油脂产品按摩尔比15∶1的混合液碱催化转化为单甲酯和甘油。本方法是一个直接甲脂化制备生物柴油的工艺简洁、降低成本的新技术。文中还讨论了该工艺影响转化效率的主要因素,如摩尔比,催化量,温度,反应时间和酸度。香果树生物柴油不重蒸,而其生物柴油的主要特性,如粘度、热值、比重、闪点、冷滤点等与生物柴油标准的匹配度,也做了报道,研究结果将为香果树生物柴油以非重蒸油料制备生物柴油产品,作为潜在的柴油燃料替代产品提供技术支撑。  相似文献   

15.
Optimization of lipase-catalyzed biodiesel by response surface methodology   总被引:18,自引:0,他引:18  
Biodiesel prepared by catalyzed mild transesterification has become of much current interest for bioenergy. The ability of a commercial immobilized lipase (Novo Industries--Bagsvaerd, Denmark) from Rhizomucor miehei (Lipozyme IM-77) to catalyze the transesterification of soybean oil and methanol was investigated in this study. Response surface methodology and 5-level-5-factor central composite rotatable design were employed to evaluate the effects on reaction time, temperature, enzyme amount, molar ratio of methanol to soybean oil, and added water content on percentage weight conversion to soybean oil methyl ester by transesterification. Based on ridge max analysis, the optimum synthesis conditions giving 92.2% weight conversion were: reaction time 6.3 h, temperature 36.5 degrees C, enzyme amount 0.9 BAUN (Batch Acidolysis Units NOVO), substrate molar ratio 3.4:1, and added water 5.8%.  相似文献   

16.
A lipase from Candida sp., suitable for transesterification of fats and oils to produce fatty acid methyl ester (FAME), was immobilized on a cheap cotton membrane, in this paper. The conversion ratio of salad oil to biodiesel could reach up to 96% with the optimal reaction conditions. Continuous reaction in a fixed bed reactor was also investigated. A three-step transesterification with methanol (methanolysis) of oil was conducted by using a series of nine columns packed with immobilized Candida sp. 99–125 lipase. As substrate of the first reaction step, plant or waste oil was used together with 1/3 molar equivalent of methanol against total fatty acids in the oil. Mixtures of the first- and second-step eluates and 1/3 molar equivalent of methanol were used for the second- and third-reaction steps. A hydrocyclone was used in order to on-line separate the by-product glycerol after every 1/3 molar equivalent of methanol was added. Petroleum ether was used as solvent (3/2, v/v of oil) and the pump was operated with a flow rate of 15 L/h giving an annual throughput of 100 t. The final conversion ratio of the FAME from plant oil and waste oil under the optimal condition was 90% and 92%, respectively. The life of the immobilized lipase was more than 10 days. This new technique has many strongpoints such as low pollution, environmentally friendly, and low energy costs.  相似文献   

17.
The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.  相似文献   

18.
Wan Z  Hameed BH 《Bioresource technology》2011,102(3):2659-2664
In this study, methyl ester (ME) was produced by transesterification of palm oil (CPO) (cooking grade) using activated carbon supported calcium oxide as a solid base catalyst (CaO/AC). Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effect of reaction time, molar ratio of methanol to oil, reaction temperature and catalyst amount on the transesterification process. The optimum condition for CPO transesterification to methyl ester was obtained at 5.5 wt.% catalyst amount, 190 °C temperature, 15:1 methanol to oil molar ratio and 1 h 21 min reaction time. At the optimum condition, the ME content was 80.98%, which is well within the predicted value of the model. Catalyst regeneration studies indicate that the catalyst performance is sustained after two cycles.  相似文献   

19.
The aim of the present study was to investigate the applicability of a previously developed method for the analysis of triacylglycerol molecular species to the simultaneous determination of triacylglycerols, diacylglycerols and monoacylglycerols of human very-low-density lipoproteins (VLDL). Ten elderly women were recruited for the study. Blood was obtained in fasting conditions and VLDL were isolated by ultracentrifugation. Neutral lipids were separated by solid-phase extraction and were subsequently injected on a reversed-phase HPLC system, with an elution system composed of acetone in acetonitrile. The method allowed the separation of four monoacylglycerols, 18 diacylglycerols and 24 triacylglycerols, including the resolution of positional isomers of diacylglycerols. Monoacylglycerols were composed of oleic, linoleic, palmitic and stearic acids. The major diacylglycerols were 1,2-dilinoleoyl-glycerol and 1,3-dilinoleoyl-glycerol (14.24+/-1.02 and 17.93+/-1.42%, respectively). The main triacylglycerols quantified were dioleoyl-stearoyl-glycerol (OOS), oleoyl-dipalmitoyl-glycerol (OPP), trilinoleoyl-glycerol (LLL) and linoleoyl-distearoyl-glycerol (LSS), accounting for 11.25+/-2.15, 10.14+/-2.05, 9.35+/-2.30 and 8.56+/-1.56%, respectively. An inverse relationship between polarity and fatty acid disappearance from triacylglycerols (r(2)=0.82, P<0.05) and from diacylglycerols (r(2)=0.93, P<0.01) was discovered. In conclusion, the method allowed, for the first time, the easy, rapid and simultaneous determination in a single chromatogram of triacylglycerol, diacylglycerol and monoacylglycerol molecular species of human VLDL by reversed-phase HPLC.  相似文献   

20.
亚麻木酚素的微波辅助提取工艺研究   总被引:11,自引:0,他引:11  
采用微波辅助提取法从脱脂亚麻籽壳中提取亚麻木酚素,以磷钼酸显色的方法定量测定亚麻木酚素,通过单因素试验、中心组合试验及响应面分析,确定微波辅助提取的最优工艺条件为:乙醇浓度40.9%(v/v)、液固比21.9:1(mL/g)、超声处理5 min进行预浸、辐照时间90.5 s、微波功率为130 W。与常规溶剂提取法和索氏提取方法相比,微波辅助提取法显著提高了亚麻木酚素的得率,大大缩短了提取时间,并节省了能耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号