首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was undertaken to examine the influence of guanethidine monosulfate-induced sympathectomy on exercise-induced adaptations of cardiac contractile protein and on acute hemodynamic responses to exercise involving female neonatal rats. Four groups of rats were studied: 1) normal sedentary (NS), 2) normal trained (NT), 3) sympathectomized sedentary (SS), and 4) sympathectomized trained (ST). The 9-wk running program, which began at 20 days of age, induced increases in whole-body maximal O2 consumption and skeletal-muscle citrate synthase activity in both NT and ST groups compared with NS (P less than 0.05). Submaximal exercise tests demonstrated circulatory adaptations for NT, SS, and ST groups compared with NC; however, the ST group demonstrated the greatest degree of altered cardiac function (decreased heart rate, left ventricular pressure, and contractility index) during exercise. Also, significant reductions in both myosin- and Ca2+-regulated myofibril adenosinetriphosphatase (ATPase) activity and increases in the relative content of the low ATPase myosin isozyme, V3, occurred in the hearts of the two trained groups (P less than 0.05). These findings suggest that chronic exercise involving normal and sympathectomized neonatal rats improves cardiac function without compromising maximal exercise capacity. Also, the exercise-related adaptation involving myosin isozyme shifts are exaggerated when involvement of the sympathetic nervous system is reduced during training.  相似文献   

2.
Systemic hypoxia results in rapid increases in leukocyte-endothelial adherence (LEA) and emigration, vascular permeability, and mast cell activation in several microcirculations. Observations in cremaster muscle suggest that this response is initiated by a mediator released from a distant site (Dix R, Orth T, Allen JA, Wood JG, and Gonzalez NC. J Appl Physiol 95: 2495-2502, 2003). The present experiments in rat cremaster muscle tested the hypothesis that, if a circulating mediator triggers hypoxia-induced inflammation, then plasma from hypoxic rats should elicit LEA in normoxic cremaster venules. Plasma from conscious donor rats breathing 10% O2-90% N2 for 5 min was applied topically to the cremaster of normoxic anesthetized rats. In this and all other groups described below, the donor plasma had attained normoxic PO2 when applied to the cremaster. LEA (leukocytes/100-microm venule) increased from 2.7 +/- 0.8 to 12.3 +/- 2.4, and venular shear rate and arteriolar diameter decreased to 79 +/- 9% (P < 0.05, n = 6) and 77 +/- 5% of control (P < 0.05, n = 5), respectively, 10 min after application of plasma from hypoxic donors. The decrease in venular shear rate was exclusively due to a reduction of venular blood flow, secondary to the upstream arteriolar vasoconstriction. Plasma from normoxic donors had no effects. Plasma from blood equilibrated in vitro for 5 min with 5% CO2-95% N2 did not alter LEA or shear rate of normoxic cremasters, suggesting that the putative mediator does not originate in blood cells. The effects of plasma from hypoxic rats persisted when the donors were pretreated with the mast cell stabilizer cromolyn, which prevents hypoxia-induced LEA. This suggests that the effects of hypoxic plasma are not due to inflammatory mediators released by adherent leukocytes in the donor rat. There was a positive correlation between LEA and mast cell degranulation observed histologically. These results support the idea that systemic hypoxia produces the release of a substance transported by the circulation that initiates the microvascular inflammation.  相似文献   

3.
4.
5.
6.
Albino rats Wistar family were raised since birth in normobaric hypoxic environment (10% O2 in N2). This hypoxic animal group and a normoxic control group were subjected to acute hypoxia in two spaced tests. The rats were exposed for 15 minutes to 7% O2 and later to 5% O2 gas mixture. At the end of the test with 7% O2 the hypoxic animals since birth showed a smaller quantity of blood lactate and their acid-base balance was more acid when compared to control animals. These differences were significant. In the considered metabolic parameters the differences between the 2 groups became not significant at the end of the test with 5% O2. We believe that the found differences in mentioned parameters between hypoxic and normoxic animals, also according to cellular adaptative processes, occurred during the rearing in hypoxic environment. In the test with 5% O2 the seriousness of the hypoxia overcomes the effects of adaptative mechanisms in hypoxic animals since birth. We believe that hypoxic rats since birth represent, limitedly to some aspects, different metabolic models compared to normoxic animals.  相似文献   

7.
Stretch-activated channels (SACs) act as membrane mechanotransducers since they convert physical forces into biological signals and hence into a cell response. Pulmonary arterial smooth muscle cells (PASMCs) are continuously exposed to mechanical stimulations e.g., compression and stretch, that are enhanced under conditions of pulmonary arterial hypertension (PAH). Using the patch-clamp technique (cell-attached configuration) in PASMCs, we showed that applying graded negative pressures (from 0 to -60 mmHg) to the back end of the patch pipette increases occurrence and activity of SACs. The current-voltage relationship (from -80 to +40 mV) was almost linear with a reversal potential of 1 mV and a slope conductance of 34 pS. SACs were inhibited in the presence of GsMTx-4, a specific SACs blocker. Using microspectrofluorimetry (indo-1), we found that hypotonic-induced cell swelling increases intracellular Ca(2+) concentration ([Ca(2+)](i)). This [Ca(2+)](i) increase was markedly inhibited in the absence of external Ca(2+) or in the presence of the following blockers of SACs: gadolinium, streptomycin, and GsMTx-4. Interestingly, in chronically hypoxic rats, an animal model of PAH, SACs were more active and hypotonic-induced calcium response in PASMCs was significantly higher (nearly a two-fold increase). Moreover, unlike in normoxic rats, intrapulmonary artery rings from hypoxic rats mounted in a Mulvany myograph, exhibited a myogenic tone sensitive to SAC blockers. In conclusion, this work demonstrates that SACs in rat PASMCs can be activated by membrane stretch as well as hypotonic stimulation and are responsible for [Ca(2+)](i) increase. The link between SACs activation-induced calcium response and myogenic tone in chronically hypoxic rats suggests that SACs are an important element for the increased pulmonary vascular tone in PAH and that they may represent a molecular target for PAH treatment.  相似文献   

8.
Many avian species exhibit an extraordinary ability to exercise under hypoxic condition compared with mammals, and more efficient pulmonary O(2) transport has been hypothesized to contribute to this avian advantage. We studied six emus (Dromaius novaehollandaie, 4-6 mo old, 25-40 kg) at rest and during treadmill exercise in normoxia and hypoxia (inspired O(2) fraction approximately 0.13). The multiple inert gas elimination technique was used to measure ventilation-perfusion (V/Q) distribution of the lung and calculate cardiac output and parabronchial ventilation. In both normoxia and hypoxia, exercise increased arterial Po(2) and decreased arterial Pco(2), reflecting hyperventilation, whereas pH remained unchanged. The V/Q distribution was unimodal, with a log standard deviation of perfusion distribution = 0.60 +/- 0.06 at rest; this did not change significantly with either exercise or hypoxia. Intrapulmonary shunt was <1% of the cardiac output in all conditions. CO(2) elimination was enhanced by hypoxia and exercise, but O(2) exchange was not affected by exercise in normoxia or hypoxia. The stability of V/Q matching under conditions of hypoxia and exercise may be advantageous for birds flying at altitude.  相似文献   

9.
10.
11.
The distribution and ultrastructural characteristics of calbindin D-28k immunoreactive nerve fibers were examined in the carotid body of the normoxic control rats by light and electron microscopy, and the abundance of calbindin D-28k fibers in the carotid body was compared in normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). Calbindin D-28k immunoreactivity was recognized in nerve fibers within the carotid body. Calbindin D-28k immunoreactive nerve fibers appeared as thin processes with many varicosities. They were distributed around clusters of glomus cells, and around blood vessels. Immunoelectron microscopy revealed that the calbindin D-28k immunoreactive nerve terminals are in close apposition with the glomus cells, and membrane specialization is visible in some terminals. Some dense-cored vesicles in the glomus cells were aggregated in this contact region. The chronically hypoxic carotid bodies were found to be enlarged several fold, and a relative abundance of calbindin D-28k fibers was lesser than in the normoxic carotid bodies. When expressed by the density of varicosities per unit area of the parenchyma, the density of calbindin D-28k fibers associated with the glomus cells in chronically hypoxic carotid bodies was decreased by 70%. These immunohistochemical findings indicate a morphological basis for involvement of calcium binding protein in the neural pathway that modulates carotid body chemoreception.  相似文献   

12.
Reactive oxygen species (ROS), which may be involved in ischemic or reperfusion heart injury, can be produced by mitochondria. Previous work indicated that coupled mitochondria from ischemic heart tissue incubated in calcium-free medium produced less ROS than normal. The effects of calcium, which may be elevated in hypoxic or ischemic tissue, were not examined. The relative production of ROS by mitochondria from normoxic or hypoxic rat heart tissue was estimated by measuring the oxidation of dichlorofluorescin to the fluorescent compound, dichlorofluorescein. ROS were detectable during succinate-stimulated State 4 respiration. In the absence of calcium, mitochondria from hypoxic (60 min) heart tissue produced less ROS than mitochondria from normoxic heart tissue. In the presence of 0.1, 1 or 10 microM calcium, ROS produced by hypoxic mitochondria were increased to normoxic levels. While function was depressed in mitochondria from hypoxic tissue, the presence of 0.1 and 1 microM calcium had no further effect. Respiration was uncoupled in the presence of 10 microM calcium in mitochondria from both normoxic and hypoxic heart tissue. ROS production was increased in mitochondria from hypoxic tissue with both increasing concentrations of calcium and increasing duration of exposure. ROS production in mitochondria from normoxic heart tissue was only stimulated after 200 or more seconds of exposure to 1 or 10 microM calcium. Production of ROS in mitochondria from hypoxic tissue in the presence of 1 microM calcium was inhibited by rotenone (80%), ruthenium red (69%), and a combination of these agents (96%). In contrast, ruthenium red had no effect on ROS production by mitochondria from normoxic heart tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Neuroglobin (Ngb), a neuron-specific heme-binding protein that binds O2, CO and NO reversibly, and promotes in vivo and in vitro cell survival after hypoxic and ischaemic insult. Although the mechanisms of this neuroprotection remain unknown, Ngb might play an important role in counteracting the adverse effects of ischaemic stroke and cerebral hypoxia. Several Ngb overexpressing mouse models have confirmed this hypothesis; however, these models were not yet exposed to in-depth behavioural characterisations. To investigate the potential changes in behaviour due to Ngb overexpression, heterozygous mice and wild type (WT) littermates were subjected to a series of cognitive and behavioural tests (i.e., the SHIRPA primary screening, the hidden-platform Morris water maze, passive avoidance learning, 47 h cage activity, open field exploration, a dark–light transition box, an accelerating rotarod, a stationary beam, a wire suspension task and a gait test) under normoxic and hypoxic conditions. No significant behavioural differences were found between WT and Ngb-overexpressing mice at three months old. However, one-year-old Ngb-overexpressing mice travelled more distance on the stationary beam compared with WT littermates. This result shows that the constitutive overexpression of Ngb might counteract the endogenous decrease of Ngb in crucial brain regions such as the cerebellum, thereby counteracting age-induced neuromotor dysfunction. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

14.
15.
The administration of cocaine hydrochloride intraperitoneally (25 mg/kg) produces a drop in VO2 in both normoxic and hypoxic mice. The critical PO2 is also decreased and so is the body temperature. The mitochondrial respiration shows a large fall in ST3 and RCR. The addition of cocaine in-vitro to the incubating medium induces changes in the mitochondrial respiration similar to those found after in-vivo administration. This report shows that in addition to its in-vivo actions cocaine alters the respiratory function of the isolated liver mitochondria.  相似文献   

16.
Exercise-induced intrapulmonary arteriovenous shunting, as detected by saline contrast echocardiography, has been demonstrated in healthy humans. We have previously suggested that increases in both pulmonary pressures and blood flow associated with exercise are responsible for opening these intrapulmonary arteriovenous pathways. In the present study, we hypothesized that, although cardiac output and pulmonary pressures would be higher in hypoxia, the potent pulmonary vasoconstrictor effect of hypoxia would actually attenuate exercise-induced intrapulmonary shunting. Using saline contrast echocardiography, we examined nine healthy men during incremental (65 W + 30 W/2 min) cycle exercise to exhaustion in normoxia and hypoxia (fraction of inspired O(2) = 0.12). Contrast injections were made into a peripheral vein at rest and during exercise and recovery (3-5 min postexercise) with pulmonary gas exchange measured simultaneously. At rest, no subject demonstrated intrapulmonary shunting in normoxia [arterial Po(2) (Pa(O(2))) = 98 +/- 10 Torr], whereas in hypoxia (Pa(O(2)) = 47 +/- 5 Torr), intrapulmonary shunting developed in 3/9 subjects. During exercise, approximately 90% (8/9) of the subjects shunted during normoxia, whereas all subjects shunted during hypoxia. Four of the nine subjects shunted at a lower workload in hypoxia. Furthermore, all subjects continued to shunt at 3 min, and five subjects shunted at 5 min postexercise in hypoxia. Hypoxia has acute effects by inducing intrapulmonary arteriovenous shunt pathways at rest and during exercise and has long-term effects by maintaining patency of these vessels during recovery. Whether oxygen tension specifically regulates these novel pathways or opens them indirectly via effects on the conventional pulmonary vasculature remains unclear.  相似文献   

17.
18.
The influence of theophylline ethylenediamine (100 mg/kg i.p.) on gluconeogenesis was studied in normal and in adrenodemedullated and reserpinized rats after overnight fasting by measuring the time-course of Alanine-14C incorporation into Glucose-14C. In the normal rat, theophylline produced a moderate hyperglycemia associated with an increased conversion of alanine to glucose at all time intervals. In addition, a marked rise of plasma levels of insulin and glucagon was observed. In sympathetctomized rats, plasma glucose and gluconeogenesis were again enhanced by theophylline, but the pattern of these modifications differed from that of normal rats since the peak values occurred earlier. Subsequently, both parameters rapidly declined reaching values lower than controls at the end of the experiment. Insulin response to theophylline was higher in sympathectomized animals in comparison to normal rats, while glucagon response was approximately of the same magnitude in the two groups. From these findings it was concluded that theophylline is able to stimulate gluconeogenesis from alanine both in the normal and sympathectomized rat. The different pattern of alanine conversion to glucose seems to depend on the different participation of insulin and catecholamines in the two groups.  相似文献   

19.
Respiratory mechanics in adult rats hypoxic in the neonatal period   总被引:1,自引:0,他引:1  
Newborn rats were exposed to 10% O2 from 24 h to 6 days after birth, then returned to normoxia and examined at 50 days of age, i.e., after reaching sexual maturity. Despite the important impairment in somatic growth during hypoxia, at 50 days body weight and nose-tail length were as in control rats never exposed to hypoxia. Hypoxic rats had a bigger chest, with larger anteroposterior diameter, larger surface area of the muscle component of the diaphragm, and heavier and more expanded lungs. None of these structural changes were observed in a third group of rats, which were exposed for 6 days to hypoxia between 35 and 42 days of age, i.e., at a much more advanced stage of postnatal development. In addition, hypoxic rats had higher compliance of the respiratory system and of the lung and lower total pulmonary resistance than control rats. Frequency dependence of compliance was not different. We conclude that in the rat the structural changes induced by neonatal chronic hypoxia are not resolved by the return to normoxia but persist at least until postpuberty with modifications of the mechanical properties of the respiratory system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号