首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gordo I  Navarro A  Charlesworth B 《Genetics》2002,161(2):835-848
The levels and patterns of variation at a neutral locus are analyzed in a haploid asexual population undergoing accumulation of deleterious mutations due to Muller's ratchet. We find that the movement of Muller's ratchet can be associated with a considerable reduction in genetic diversity below classical neutral expectation. The extent to which variability is reduced is a function of the deleterious mutation rate, the fitness effects of the mutations, and the population size. Approximate analytical expressions for the expected genetic diversity are compared with simulation results under two different models of deleterious mutations: a model where all deleterious mutations have equal effects and a model where there are two classes of deleterious mutations. We also find that Muller's ratchet can produce a considerable distortion in the neutral frequency spectrum toward an excess of rare variants.  相似文献   

2.
Finite parthenogenetic populations with high genomic mutation rates accumulate deleterious mutations if back mutations are rare. This mechanism, known as Muller's ratchet, can explain the rarity of parthenogenetic species among so called higher organisms. However, estimates of genomic mutation rates for deleterious alleles and their average effect in the diploid condition in Drosophila suggest that Muller's ratchet should eliminate parthenogenetic insect populations within several hundred generations, provided all mutations are unconditionally deleterious. This fact is inconsistent with the existence of obligatory parthenogenetic insect species. In this paper an analysis of the extent to which compensatory mutations can counter Muller's ratchet is presented. Compensatory mutations are defined as all mutations that compensate for the phenotypic effects of a deleterious mutation. In the case of quantitative traits under stabilizing selection, the rate of compensatory mutations is easily predicted. It is shown that there is a strong analogy between the Muller's ratchet model of Felsenstein (1974) and the quantitative genetic model considered here, except for the frequency of compensatory mutations. If the intensity of stabilizing selection is too small or the mutation rate too high, the optimal genotype becomes extinct and the population mean drifts from the optimum but still reaches a stationary distribution. This distance is essentially the same as predicted for sexually reproducing populations under the same circumstances. Hence, at least in the short run, compensatory mutations for quantitative characters are as effective as recombination in halting the decline of mean fitness otherwise caused by Muller's ratchet. However, it is questionable whether compensatory mutations can prevent Muller's ratchet in the long run because there might be a limit to the capacity of the genome to provide compensatory mutations without eliminating deleterious mutations at least during occasional episodes of sex.  相似文献   

3.
Muller''s Ratchet, Epistasis and Mutation Effects   总被引:9,自引:5,他引:4       下载免费PDF全文
D. Butcher 《Genetics》1995,141(1):431-437
In this study, computer simulation is used to show that despite synergistic epistasis for fitness, Muller's ratchet can lead to lethal fitness loss in a population of asexuals through the accumulation of deleterious mutations. This result contradicts previous work that indicated that epistasis will halt the ratchet. The present results show that epistasis will not halt the ratchet provided that rather than a single deleterious mutation effect, there is a distribution of deleterious mutation effects with sufficient density near zero. In addition to epistasis and mutation distribution, the ability of Muller's ratchet to lead to the extinction of an asexual population under epistasis for fitness depends strongly on the expected number of offspring that survive to reproductive age. This strong dependence is not present in the nonepistatic model and suggests that interpreting the population growth parameter as fecundity is inadequate. Because a continuous distribution of mutation effects is used in this model, an emphasis is placed on the dynamics of the mutation effect distribution rather than on the dynamics of the number of least mutation loaded individuals. This perspective suggests that current models of gene interaction are too simple to apply directly to long-term prediction for populations undergoing the ratchet.  相似文献   

4.
Neher RA  Shraiman BI 《Genetics》2012,191(4):1283-1293
The accumulation of deleterious mutations is driven by rare fluctuations that lead to the loss of all mutation free individuals, a process known as Muller's ratchet. Even though Muller's ratchet is a paradigmatic process in population genetics, a quantitative understanding of its rate is still lacking. The difficulty lies in the nontrivial nature of fluctuations in the fitness distribution, which control the rate of extinction of the fittest genotype. We address this problem using the simple but classic model of mutation selection balance with deleterious mutations all having the same effect on fitness. We show analytically how fluctuations among the fittest individuals propagate to individuals of lower fitness and have dramatically amplified effects on the bulk of the population at a later time. If a reduction in the size of the fittest class reduces the mean fitness only after a delay, selection opposing this reduction is also delayed. This delayed restoring force speeds up Muller's ratchet. We show how the delayed response can be accounted for using a path-integral formulation of the stochastic dynamics and provide an expression for the rate of the ratchet that is accurate across a broad range of parameters.  相似文献   

5.
The rate of accumulation of deleterious mutations by Muller's ratchet is investigated in large asexual haploid populations, for a range of parameters with potential biological relevance. The rate of this process is studied by considering a very simple model in which mutations can have two types of effect: either strongly deleterious or mildly deleterious. It is shown that the rate of accumulation of mildly deleterious mutations can be greatly increased by the presence of strongly deleterious mutations, and that this can be predicted from the associated reduction in effective population size (the background selection effect). We also examine the rate of the ratchet when there are two classes of mutation of similar but unequal effects on fitness. The accuracy of analytical approximations for the rate of this process is analysed. Its possible role in causing the degeneration of Y and neo-Y chromosomes is discussed in the light of our present knowledge of deleterious mutation rates and selection coefficients.  相似文献   

6.
Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, "...individuals with extreme values of the trait will tend to carry more deleterious alleles...." We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa2, where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a2 is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a2; and beta, the intensity of selection, measured as the ratio of additive genetic variance to the "variance" of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that beta must equal Vm/VG, the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations.  相似文献   

7.
Wardlaw AM  Agrawal AF 《Genetics》2012,191(3):907-916
Asexual species accumulate deleterious mutations through an irreversible process known as Muller's ratchet. Attempts to quantify the rate of the ratchet have ignored the role of temporal environmental heterogeneity even though it is common in nature and has the potential to affect overall ratchet rate. Here we examine Muller's ratchet in the context of conditional neutrality (i.e., mutations that are deleterious in some environmental conditions but neutral in others) as well as more subtle changes in the strength (but not sign) of selection. We find that temporal variation increases the rate of the ratchet (mutation accumulation) and the rate of fitness decline over that of populations experiencing constant selection of equivalent average strength. Temporal autocorrelation magnifies the effects of temporal heterogeneity and can allow the ratchet to operate at large population sizes in which it would be halted under constant selection. Classic studies of Muller's ratchet show that the rate of fitness decline is maximized when selection is of a low but intermediate strength. This relationship changes quantitatively with all forms of temporal heterogeneity studied and changes qualitatively when there is temporal autocorrelation in selection. In particular, the rate of fitness decline can increase indefinitely with the strength of selection with some forms of temporal heterogeneity. Our finding that temporal autocorrelation in selection dramatically increases ratchet rate and rate of fitness decline may help to explain the paucity of asexual taxa.  相似文献   

8.
The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller's ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller's ratchet can lead to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of a population in a static environment must involve a dynamic mutation-selection balance, where accumulation of deleterious mutations is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation rate U and calculate the fraction of beneficial mutations, ε, that maintains the balanced state. We find that a surprisingly low ε suffices to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted population in spite of Muller's ratchet. This may explain the maintenance of mitochondria and other asexual genomes.  相似文献   

9.
This work presents a new approach to Muller's ratchet, where Haigh's model is approximately mapped into a simpler model that describes the behaviour of a population after a click of the ratchet, i.e., after loss of what was the fittest class. This new model predicts the distribution of times to the next click of the ratchet and is equivalent to a Wright-Fisher model for a population of haploid asexual individuals with one locus and two alleles. Within this model, the fittest members of a population correspond to carriers of one allele, while all other individuals have suboptimal fitness and are represented as carriers of the other allele. In this way, all suboptimal fitness individuals are amalgamated into a single “mutant” class.The approach presented here has some limitations and the potential for improvement. However, it does lead to results for the rate of the ratchet that, over a wide range of parameters, are accurate within one order of magnitude of simulation results. This contrasts with existing approaches, which are designed for only one or other of the two different parameter regimes known for the ratchet and are more accurate only in the parameter regime they were designed for.Numerical results are presented for the mean time between clicks of the ratchet for (i) the Wright-Fisher model, (ii) a diffusion approximation of this model and (iii) individually based simulations of a full model. The diffusion approximation is validated over a wide range of parameters by its close agreement with the Wright-Fisher model.The present work predicts that: (a) the time between clicks of the ratchet is insensitive to the value of the selection coefficient when the genomic mutation rate is large compared with the selection coefficient against a deleterious mutation, (b) the time interval between clicks of the ratchet has, approximately, an exponential distribution (or its discrete analogue). It is thus possible to determine the variance in times between clicks, given the expected time between clicks. Evidence for both (a) and (b) is seen in simulations.  相似文献   

10.
Reproduction is inherently risky, in part because genomic replication can introduce new mutations that are usually deleterious toward fitness. This risk is especially severe for organisms whose genomes replicate "semi-conservatively," e.g. viruses and bacteria, where no master copy of the genome is preserved. Lethal mutagenesis refers to extinction of populations due to an unbearably high mutation rate (U), and is important both theoretically and clinically, where drugs can extinguish pathogens by increasing their mutation rate. Previous theoretical models of lethal mutagenesis assume infinite population size (N). However, in addition to high U, small N can accelerate extinction by strengthening genetic drift and relaxing selection. Here, we examine how the time until extinction depends jointly on N and U. We first analytically compute the mean time until extinction (τ) in a simplistic model where all mutations are either lethal or neutral. The solution motivates the definition of two distinct regimes: a survival phase and an extinction phase, which differ dramatically in both how τ scales with N and in the coefficient of variation in time until extinction. Next, we perform stochastic population-genetics simulations on a realistic fitness landscape that both (i) features an epistatic distribution of fitness effects that agrees with experimental data on viruses and (ii) is based on the biophysics of protein folding. More specifically, we assume that mutations inflict fitness penalties proportional to the extent that they unfold proteins. We find that decreasing N can cause phase transition-like behavior from survival to extinction, which motivates the concept of "lethal isolation." Furthermore, we find that lethal mutagenesis and lethal isolation interact synergistically, which may have clinical implications for treating infections. Broadly, we conclude that stably folded proteins are only possible in ecological settings that support sufficiently large populations.  相似文献   

11.
12.
Söderberg RJ  Berg OG 《Genetics》2011,187(4):1129-1137
Muller's ratchet operates in asexual populations without intergenomic recombination. In this case, deleterious mutations will accumulate and population fitness will decline over time, possibly endangering the survival of the species. Mutator mutations, i.e., mutations that lead to an increased mutation rate, will play a special role for the behavior of the ratchet. First, they are part of the ratchet and can come to dominance through accumulation in the ratchet. Second, the fitness-loss rate of the ratchet is very sensitive to changes in the mutation rate and even a modest increase can easily set the ratchet in motion. In this article we simulate the interplay between fitness loss from Muller's ratchet and the evolution of the mutation rate from the fixation of mutator mutations. As long as the mutation rate is increased in sufficiently small steps, an accelerating ratchet and eventual extinction are inevitable. If this can be countered by antimutators, i.e., mutations that reduce the mutation rate, an equilibrium can be established for the mutation rate at some level that may allow survival. However, the presence of the ratchet amplifies fluctuations in the mutation rate and, even at equilibrium, these fluctuations can lead to dangerous bursts in the ratchet. We investigate the timescales of these processes and discuss the results with reference to the genome degradation of the aphid endosymbiont Buchnera aphidicola.  相似文献   

13.
We investigate the impact of antagonistic pleiotropy on the most widely used methods of estimation of the average coefficient of dominance of deleterious mutations from segregating populations. A proportion of the deleterious mutations affecting a given studied fitness component are assumed to have an advantageous effect on another one, generating overdominance on global fitness. Using diffusion approximations and transition matrix methods, we obtain the distribution of gene frequencies for nonpleiotropic and pleiotropic mutations in populations at the mutation-selection-drift balance. From these distributions we build homozygous and heterozygous chromosomes and assess the behavior of the estimators of dominance. A very small number of deleterious mutations with antagonistic pleiotropy produces substantial increases on the estimate of the average degree of dominance of mutations affecting the fitness component under study. For example, estimates are increased three- to fivefold when 2% of segregating loci are over-dominant for fitness. In contrast, strengthening pleiotropy, where pleiotropic effects are assumed to be also deleterious, has little effect on the estimates of the average degree of dominance, supporting previous results. The antagonistic pleiotropy model considered, applied under mutational parameters described in the literature, produces patterns for the distribution of chromosomal viabilities, levels of genetic variance, and homozygous mutation load generally consistent with those observed empirically for viability in Drosophila melanogaster.  相似文献   

14.
Jain K 《Genetics》2008,179(4):2125-2134
We consider the dynamics of a nonrecombining haploid population of finite size that accumulates deleterious mutations irreversibly. This ratchet-like process occurs at a finite speed in the absence of epistasis, but it has been suggested that synergistic epistasis can halt the ratchet. Using a diffusion theory, we find explicit analytical expressions for the typical time between successive clicks of the ratchet for both nonepistatic and epistatic fitness functions. Our calculations show that the interclick time is of a scaling form that in the absence of epistasis gives a speed that is determined by size of the least-loaded class and the selection coefficient. With synergistic interactions, the ratchet speed is found to approach zero rapidly for arbitrary epistasis. Our analytical results are in good agreement with the numerical simulations.  相似文献   

15.
Gordo I  Charlesworth B 《Genetics》2000,154(3):1379-1387
The accumulation of deleterious mutations due to the process known as Muller's ratchet can lead to the degeneration of nonrecombining populations. We present an analytical approximation for the rate at which this process is expected to occur in a haploid population. The approximation is based on a diffusion equation and is valid when N exp(-u/s) > 1, where N is the population size, u is the rate at which deleterious mutations occur, and s is the effect of each mutation on fitness. Simulation results are presented to show that the approximation estimates the rate of the process better than previous approximations for values of mutation rates and selection coefficients that are compatible with the biological data. Under certain conditions, the ratchet can turn at a biologically significant rate when the deterministic equilibrium number of individuals free of mutations is substantially >100. The relevance of this process for the degeneration of Y or neo-Y chromosomes is discussed.  相似文献   

16.
Despite their importance, the parameters describing the spontaneous deleterious mutation process have not been well described in many organisms. If mutations are important for the evolution of every living organism, their importance becomes critical in the case of RNA-based viruses, in which the frequency of mutation is orders of magnitude larger than in DNA-based organisms. The present work reports minimum estimates of the deleterious mutation rate, as well as the characterization of the distribution of deleterious mutational effects on the total fitness of the vesicular stomatitis virus (VSV). The estimates are based on mutation-accumulation experiments in which selection against deleterious mutations was minimized by recurrently imposing genetic bottlenecks of size one. The estimated deleterious mutation rate was 1.2 mutations per genome and generation, with a mean fitness effect of –0.39% per generation. At the end of the mutation-accumulation experiment, the average reduction in fitness was 38% and the distribution of accumulated deleterious effects was, on average, left-skewed. The magnitude of the skewness depends on the initial fitness of the clone analysed. The implications of our findings for the evolutionary biology of RNA viruses are discussed.  相似文献   

17.
Loewe L 《Genetical research》2006,87(2):133-159
The observation of high mitochondrial mutation rates in human pedigrees has led to the question of how such an asexual genetic system can survive the accumulation of slightly deleterious mutations caused by Muller's ratchet. I define a null model to quantify in unprecedented detail the threat from extinction caused by Muller's ratchet. This model is general enough to explore the biological significance of Muller's ratchet in various species where its operation has been suspected. For increased precision over a wide range of parameter space I employ individual-based simulations run by evolution@home, the first global computing system for evolutionary biology. After compiling realistic values for the key parameters in human mitochondrial DNA (mtDNA) I find that a surprisingly large range of biologically realistic parameter combinations would lead to the extinction of the human line over a period of 20 million years - if accepted wisdom about mtDNA and Muller's ratchet is correct. The resulting genomic decay paradox complements a similar threat from extinction due to mutation accumulation in nuclear DNA and suggests evaluation of unconventional explanations for long-term persistence. A substantial list of potential solutions is given, including compensatory back mutations, mutation rate heterogeneity and occasional recombination in mtDNA. Future work will have to explore which of these actually solves the paradox. Nonetheless, the results presented here provide yet another reason to minimize anthropogenic increase of mutation rates.  相似文献   

18.
In the absence of selection, the structure of equilibrium allelic diversity is described by the elegant sampling formula of Ewens. This formula has helped to shape our expectations of empirical patterns of molecular variation. Along with coalescent theory, it provides statistical techniques for rejecting the null model of neutrality. However, we still do not fully understand the statistics of the allelic diversity expected in the presence of natural selection. Earlier work has described the effects of strongly deleterious mutations linked to many neutral sites, and allelic variation in models where offspring fitness is unrelated to parental fitness, but it has proven difficult to understand allelic diversity in the presence of purifying selection at many linked sites. Here, we study the population genetics of infinitely many perfectly linked sites, some neutral and some deleterious. Our approach is based on studying the lineage structure within each class of individuals of similar fitness in the deleterious mutation-selection balance. Consistent with previous observations, we find that for moderate and weak selection pressures, the patterns of allelic diversity cannot be described by a neutral model for any choice of the effective population site. We compute precisely how purifying selection at many linked sites distorts the patterns of allelic diversity, by developing expressions for the likelihood of any configuration of allelic types in a sample analogous to the Ewens sampling formula.  相似文献   

19.
Engelstädter J 《Genetics》2008,180(2):957-967
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here, I construct a model of a sexual population where deleterious mutations arise on both X and Y chromosomes. Simulation results of this model demonstrate that mutations on the X chromosome can considerably slow down the ratchet. On the other hand, a lower mutation rate in females than in males, background selection, and the emergence of dosage compensation are expected to accelerate the process.  相似文献   

20.
We carried out an experiment of inbreeding and upward artificial selection for egg-to-adult viability in a recently captured population of Drosophila melanogaster, as well as computer simulations of the experimental design, in order to obtain information on the nature of genetic variation for this important fitness component. The inbreeding depression was linear with a rate of 0.70 +/- 0.11% of the initial mean per 1% increase in inbreeding coefficient, and the realized heritability was 0.06 +/- 0.07. We compared the empirical observations of inbreeding depression and selection response with computer simulations assuming a balance between the occurrence of partially recessive deleterious mutations and their elimination by selection. Our results suggest that a model assuming mutation-selection balance with realistic mutational parameters can explain the genetic variation for viability in the natural population studied. Several mutational models are incompatible with some observations and can be discarded. Mutational models assuming a low rate of mutations of large average effect and highly recessive gene action, and others assuming a high rate of mutations of small average effect and close to additive gene action, are compatible with all the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号