首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.  相似文献   

2.
Production of the bacteriocins enterocin A and enterocin B in Enterococcus faecium CTC492 was dependent on the presence of an extracellular peptide produced by the strain itself. This induction factor (EntF) was purified, and amino acid sequencing combined with DNA sequencing of the corresponding gene identified it as a peptide of 25 amino acids. The gene encodes a prepeptide of 41 amino acids, including a 16-amino-acid leader peptide of the double-glycine type. Environmental factors influenced the level of bacteriocin production in E. faecium CTC492. The optimal pH for bacteriocin production was 6.2. At pH 5.5, growth was slow, and very little bacteriocin was formed. The presence of NaCl or ethanol (EtOH) was also inhibitory to bacteriocin production, and at high concentrations of these solutes, no bacteriocin production was observed. The induction factor induced its own synthesis, and by dilution of the culture 106 times or more, nonproducing cultures were obtained. Bacteriocin production was induced in these cultures by addition of EntF. The response was linear, and low bacteriocin production could be induced by about 10−17 M EntF. This response was attenuated by low pH or the presence of high concentrations of NaCl or EtOH, and 300 times more EntF was needed to induce detectable bacteriocin production in the presence of 6.5% NaCl. High levels of bacteriocin production in cultures grown at low pH or in the presence of high concentrations of NaCl or EtOH were obtained by addition of sufficient amounts of EntF.  相似文献   

3.
The pH-neutral cell supernatant of Enterococcus faecalis BFE 1071, isolated from the feces of minipigs in Göttingen, inhibited the growth of Enterococcus spp. and a few other gram-positive bacteria. Ammonium sulfate precipitation and cation-exchange chromatography of the cell supernatant, followed by mass spectrometry analysis, yielded two bacteriocin-like peptides of similar molecular mass: enterocin 1071A (4.285 kDa) and enterocin 1071B (3.899 kDa). Both peptides are always isolated together. The peptides are heat resistant (100°C, 60 min; 50% of activity remained after 15 min at 121°C), remain active after 30 min of incubation at pH 3 to 12, and are sensitive to treatment with proteolytic enzymes. Curing experiments indicated that the genes encoding enterocins 1071A and 1071B are located on a 50-kbp plasmid (pEF1071). Conjugation of plasmid pEF1071 to E. faecalis strains FA2-2 and OGX1 resulted in the expression of two active peptides with sizes identical to those of enterocins 1071A and 1071B. Sequencing of a DNA insert of 9 to 10 kbp revealed two open reading frames, ent1071A and ent1071B, which coded for 39- and 34-amino-acid peptides, respectively. The deduced amino acid sequence of the mature Ent1071A and Ent1071B peptides showed 64 and 61% homology with the α and β peptides of lactococcin G, respectively. This is the first report of two new antimicrobial peptides representative of a fourth type of E. faecalis bacteriocin.  相似文献   

4.
A new gene, mutK, of Vibrio cholerae, encoding a 19-kDa protein which is involved in repairing mismatches in DNA via a presumably methyl-independent pathway, has been identified. The product of the mutK gene cloned in either high- or low-copy-number vectors can reduce the spontaneous mutation frequency of Escherichia coli mutS, mutL, mutU, and dam mutants. The spontaneous mutation frequency of a chromosomal mutK knockout mutant was almost identical to that of wild-type V. cholerae cells, indicating that when the methyl-directed mismatch repair is blocked, the repair potential of MutK becomes apparent. The complete nucleotide sequence of the mutK gene has been determined, and the deduced amino acid sequence showed three open reading frames (ORFs), of which the ORF3 represents the mutK gene product. The mutK gene product has no significant homology with any of the proteins deposited in the EMBL data bank. ORF2, located upstream of mutK, encodes a 14-kDa protein which has more than 70% homology with a hypothetical protein found only downstream of the E. coli vsr gene. ORF1, located farther upstream of mutK, has more than 80% homology with a major cold shock protein found in several bacteria. Downstream of mutK, a partial ORF having 60% homology with an RNA methyltransferase has been identified. The mutK gene has recently been positioned in the ordered cloned DNA map of the genome of the V. cholerae strain from which the gene was isolated (10).  相似文献   

5.
The conjugative plasmid pYI14 (61 kbp) was isolated from Enterococcus faecalis YI714, a clinical isolate. pYI14 conferred a pheromone response on its host and encoded bacteriocin 41 (bac41). Bacteriocin 41 (Bac41) only showed activity against E. faecalis. Physical mapping of pYI14 showed that it consisted of EcoRI fragments A to P. The clone pHT1100, containing EcoRI fragments A (12.6 kbp) and H (3.5 kbp), conferred the bacteriocin activity on E. faecalis strains. Genetic analysis showed that the determinant was located in a 6.6-kbp region within the EcoRI AH fragments. Six open reading frames (ORFs) were identified in this region and designated ORF7 (bacL1) ORF8 (bacL2), ORF9, ORF10, ORF11 (bacA), and ORF12 (bacI). They were aligned in this order and oriented in the same direction. ORFs bacL1, bacL2, bacA, and bacI were essential for expression of the bacteriocin in E. faecalis. Extracellular complementation of bacteriocin expression was possible for bacL1 and -L2 and bacA mutants. bacL1 and -L2 and bacA encoded bacteriocin component L and activator component A, respectively. The products of these genes are secreted into the culture medium and extracellularly complement bacteriocin expression. bacI encoded immunity, providing the host with resistance to its own bacteriocin activity. The bacL1-encoded protein had significant homology with lytic enzymes that attack the gram-positive bacterial cell wall. Sequence data for the deduced bacL1-encoded protein suggested that it has a domain structure consisting of an N-terminal signal peptide, a second domain with the enzymatic activity, and a third domain with a three-repeat structure directing the proenzyme to its cell surface receptor.  相似文献   

6.
A purified bacteriocin produced by Enterococcus faecium BFE 900 isolated from black olives was shown by Edman degradation and mass spectrometric analyses to be identical to enterocin B produced by E. faecium T136 from meat (P. Casaus, T. Nilsen, L. M. Cintas, I. F. Nes, P. E. Hernández, and H. Holo, Microbiology 143:2287–2294, 1997). The structural gene was located on a 2.2-kb HindIII fragment and a 12.0-kb EcoRI chromosomal fragment. The genetic characteristics and production of EntB by E. faecium BFE 900 differed from that described so far by the presence of a conserved sequence like a regulatory box upstream of the EntB gene, and its production was constitutive and not regulated. The 2.2-kb chromosomal fragment contained the hitherto undetected immunity gene for EntB in an atypical orientation that is the reverse of that of the structural gene. Typical transport and other genes associated with bacteriocin production were not detected on the 12.0-kb chromosomal fragment containing the EntB structural gene. This makes the EntB genetic system different from most other bacteriocin systems, where transport and possible regulatory genes are clustered. EntB was subcloned and expressed by the dedicated secretion machinery of Carnobacterium piscicola LV17A. The structural gene was amplified by PCR, fused to the divergicin A signal peptide, and expressed by the general secretory pathway in Enterococcus faecalis ATCC 19433.  相似文献   

7.
This report describes the first functional analysis of a bacteriocin immunity gene from Propionibacterium freudenreichii and its use as a selection marker for food-grade cloning. Cloning of the pcfI gene (previously orf5 [located as part of the pcfABC propionicin F operon]) rendered the sensitive host 1,000-fold more tolerant to the propionicin F bacteriocin. The physiochemical properties of the 127-residue large PcfI protein resemble those of membrane-bound immunity proteins from bacteriocin systems found in lactic acid bacteria. The high level of immunity conferred by pcfI allowed its use as a selection marker for plasmid transformation in P. freudenreichii. Electroporation of P. freudenreichii IFO12426 by use of the pcfI expression plasmid pSL102 and propionicin F selection (200 bacteriocin units/ml) yielded 107 transformants/μg DNA. The 2.7-kb P. freudenreichii food-grade cloning vector pSL104 consists of the pLME108 replicon, a multiple cloning site, and pcfI expressed from the constitutive PpampS promoter for selection. The pSL104 vector efficiently facilitated cloning of the propionicin T1 bacteriocin in P. freudenreichii. High-level propionicin T1 production (640 BU/ml) was obtained with the IFO12426 strain, and the food-grade propionicin T1 expression plasmid pSL106 was maintained by ~91% of the cells over 25 generations in the absence of selection. To the best of our knowledge this is the first report of an efficient cloning system that facilitates the generation of food-grade recombinant P. freudenreichii strains.  相似文献   

8.
Staphylococcus aureus C55 was shown to produce bacteriocin activity comprising three distinct peptide components, termed staphylococcins C55α, C55β, and C55γ. The three peptides were purified to homogeneity by a simple four-step purification procedure that consisted of ammonium sulfate precipitation followed by XAD-2 and reversed-phase (C8 and C18) chromatography. The yield following C8 chromatography was about 86%, with a more-than-300-fold increase in specific activity. When combined in approximately equimolar amounts, staphylococcins C55α and C55β acted synergistically to kill S. aureus or Micrococcus luteus but not S. epidermidis strains. The N-terminal amino acid sequences of all three peptides were obtained and staphylococcins C55α and C55β were shown to be lanthionine-containing (lantibiotic) molecules with molecular weights of 3,339 and 2,993, respectively. The C55γ peptide did not appear to be a lantibiotic, nor did it augment the inhibitory activities of staphylococcin C55α and/or C55β. Plasmids of 2.5 and 32.0 kb are present in strain C55, and following growth of this strain at elevated temperature (42°C), a large proportion of the progeny failed to produce strong bacteriocin activity and also lost the 32.0-kb plasmid. Protoplast transformation of these bacteria with purified 32-kb plasmid DNA regenerates the ability to produce the strong bacteriocin activity.  相似文献   

9.
Enterocin P is a pediocin-like, broad-spectrum bacteriocin which displays a strong inhibitory activity against Listeria monocytogenes. The bacteriocin was purified from the culture supernatant of Enterococcus faecium P13, and its molecular mechanism of action against the sensitive strain E. faecium T136 was evaluated. Although enterocin P caused significant reduction of the membrane potential (ΔΨ) and the intracellular ATP pool of the indicator organism, the pH gradient (ΔpH) component of the proton motive force (Δp) was not dissipated. By contrast, enterocin P caused carboxyfluorescein efflux from E. faecium T136-derived liposomes.  相似文献   

10.
The complete 21,344-bp DNA sequence of the bacteriocin-encoding plasmid pEF1 from Enterococcus faecium 6T1a was determined. Thirty-four putative open reading frames which could code for proteins longer than 42 amino acids were found. Those included the structural genes encoding for the previously described bacteriocins enterocin I and J (also named as enterocins L50A and L50B). After comparison to sequences in public databases, analysis of the gene organization of pEF1 suggests a modular structure with three different functional domains: the replication region, the bacteriocin region and the mobilization plus UV-resistance region. This genetic mosaic structure most probably evolved through recombination events promoted by transposable elements. The hypothesis that the bacteriocin cluster on pEF1 could act as a functional plasmid stabilization module in E. faecium 6T1a is discussed.  相似文献   

11.
A mixed culture dechlorinating 1,2-dichloroethane (1,2-DCA) to ethene was enriched from groundwater that had been subjected to long-term contamination. In the metagenome of the enrichment, a 7-kb reductive dehalogenase (RD) gene cluster sequence was detected by inverse and direct PCR. The RD gene cluster had four open reading frames (ORF) showing 99% nucleotide identity with pceB, pceC, pceT, and orf1 of Dehalobacter restrictus strain DSMZ 9455T, a bacterium able to dechlorinate chlorinated ethenes. However, dcaA, the ORF encoding the catalytic subunit, showed only 94% nucleotide and 90% amino acid identity with pceA of strain DSMZ 9455T. Fifty-three percent of the amino acid differences were localized in two defined regions of the predicted protein. Exposure of the culture to 1,2-DCA and lactate increased the dcaA gene copy number by 2 log units, and under these conditions the dcaA and dcaB genes were actively transcribed. A very similar RD gene cluster with 98% identity in the dcaA gene sequence was identified in Desulfitobacterium dichloroeliminans strain DCA1, the only known isolate that selectively dechlorinates 1,2-DCA but not chlorinated ethenes. The dcaA gene of strain DCA1 possesses the same amino acid motifs as the new dcaA gene. Southern hybridization using total genomic DNA of strain DCA1 with dcaA gene-specific and dcaB- and pceB-targeting probes indicated the presence of two identical or highly similar dehalogenase gene clusters. In conclusion, these data suggest that the newly described RDs are specifically adapted to 1,2-DCA dechlorination.  相似文献   

12.
The structural genes for the two-peptide bacteriocin enterocin 1071 (Ent1071) in Enterococcus faecalis FAIR-E 309 were cloned. DNA sequence analysis showed that the enterocin 1071A (Ent1071A) peptide of strain FAIR-E 309 differed by two amino acids from the Ent1071A reported for E. faecalis BFE 1071 (E. Balla, L. M. T. Dicks, M. Du Toit, M. J. van der Merwe, and W. H. Holzapfel, Appl. Environ. Microbiol. 66:1298-1304, 2000), while the Ent1071B gene encoded identical peptides in these strains. However, resequencing of ent1071A from E. faecalis BFE 1071 showed that the Ent1071A peptide sequence reported previously was incorrect in two amino acids. Also, ent1071B in E. faecalis FAIR-E 309 encoded a prepeptide that was three amino acids shorter than that previously reported for E. faecalis BFE 1071 Ent1071B. A presumptive immunity gene (eni1071) was located downstream of the bacteriocin structural genes. This gene was cloned into the heterologous host E. faecalis ATCC 19433 and was shown to confer immunity. A truncated ABC transporter gene was located upstream of the Ent1071 structural genes.  相似文献   

13.
Epicidin 280 is a novel type A lantibiotic produced by Staphylococcus epidermidis BN 280. During C18 reverse-phase high-performance liquid chromatography two epicidin 280 peaks were obtained; the two compounds had molecular masses of 3,133 ± 1.5 and 3,136 ± 1.5 Da, comparable antibiotic activities, and identical amino acid compositions. Amino acid sequence analysis revealed that epicidin 280 exhibits 75% similarity to Pep5. The strains that produce epicidin 280 and Pep5 exhibit cross-immunity, indicating that the immunity peptides cross-function in antagonization of both lantibiotics. The complete epicidin 280 gene cluster was cloned and was found to comprise at least five open reading frames (eciI, eciA, eciP, eciB, and eciC, in that order). The proteins encoded by these open reading frames exhibit significant sequence similarity to the biosynthetic proteins of the Pep5 operon of Staphylococcus epidermidis 5. A gene for an ABC transporter, which is present in the Pep5 gene cluster but is necessary only for high yields (G. Bierbaum, M. Reis, C. Szekat, and H.-G. Sahl, Appl. Environ. Microbiol. 60:4332–4338, 1994), was not detected. Instead, upstream of the immunity gene eciI we found an open reading frame, eciO, which could code for a novel lantibiotic modification enzyme involved in reduction of an N-terminally located oxopropionyl residue. Epicidin 280 produced by the heterologous host Staphylococcus carnosus TM 300 after introduction of eciIAPBC (i.e., no eciO was present) behaved homogeneously during reverse-phase chromatography.  相似文献   

14.
Previous studies of genes involved in the production of sakacin P by Lactobacillus sakei Lb674 revealed the presence of an inducible promoter downstream of the known spp gene clusters. We show here that this promoter drives the expression of an operon consisting of a bacteriocin gene (sppQ), a cognate immunity gene (spiQ), another gene with an unknown function (orf4), and a pseudoimmunity gene containing a frameshift mutation (orf5). The leader peptide of the new one-peptide bacteriocin sakacin Q contains consensus elements that are typical for so-called “double-glycine” leader peptides. The mature bacteriocin shows weak similarity to the BrcA peptide of the two-peptide bacteriocin brochocin C. Sakacin Q has an antimicrobial spectrum that differs from that of sakacin P, thus expanding the antimicrobial properties of the producer strain. The genes encoding sakacin Q and its cognate immunity protein showed strong translational coupling, which was investigated in detail by analyzing the properties of a series of β-glucuronidase fusions. Our results provide experimental evidence that production of the bacteriocin and production of the cognate immunity protein are tightly coregulated at the translational level.  相似文献   

15.
The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin.  相似文献   

16.
Enterocin AS-48 is a cyclic peptide produced by Enterococcus faecalis S-48 whose genetic determinants have been identified in the conjugative plasmid pMB2. A region of 7.8 kb, carrying the minimum information required for production of and immunity against AS-48, had been previously cloned and sequenced in pAM401 (pAM401-52). In this region, the as-48A structural gene and as-48B, as-48C, as-48C1, as-48D, and as-48D1 genes and open reading frame 6 (ORF6) and ORF7 had been identified. The sequence analysis carried out in this work in the BglII B fragment (6.6-kb) from pMB2 cloned downstream from the last ORF identified (ORF7) revealed the existence of two new ORFs, as-48G and as-48H, necessary for full AS-48 expression. Thus, JH2-2 transformants obtained with the pAM401-81 plasmid became producers and resistant at the wild-type level. Tn5 disruption experiments in the last genes, as-48EFGH, were not able to reproduce these expression levels, confirming that expression of these genes is necessary to get the phenotype conferred by the wild-type pMB2 plasmid. The as-48EFGH operon encodes a new ABC transporter that could be involved in producer self-protection. On the basis of the observed similarities, As-48G would be the ATP-binding domain, the deduced amino acid sequences of As-48E and As48-H could be assigned as transmembrane subunits, and As-48F, with an N-terminal transmembrane segment and a coiled-coil domain, strongly resembles the structure of some known ABC transporter accessory proteins whose localization in the cell is discussed. This cluster of genes is expressed by two polycistronic mRNAs, T2 and T3, in JH2-2(pAM401-81) in coordinate expression. Our results also suggest that expression of T3 could be regulated, because in JH2-2(pAM401EH) transformants, T3 was not detected, suggesting that these genes do not by themselves confer immunity, in accordance with the requirement for the as-48D1 gene for immunity against AS-48.  相似文献   

17.
Mundticin KS, a bacteriocin produced by Enterococcus mundtii NFRI 7393 isolated from grass silage in Thailand, is active against closely related lactic acid bacteria and the food-borne pathogen Listeria monocytogenes. In this study, biochemical and genetic characterization of mundticin KS was done. Mundticin KS was purified to homogeneity by ammonium sulfate precipitation, sequential ion-exchange chromatography, and solid-phase extraction. The gene cluster (mun locus) for mundticin KS production was cloned, and DNA sequencing revealed that the mun locus consists of three genes, designated munA, munB, and munC. The munA gene encodes a 58-amino-acid mundticin KS precursor, munB encodes a protein of 674 amino acids involved in translocation and processing of the bacteriocin, and munC encodes a mundticin KS immunity protein of 98 amino acids. Amino acid and nucleotide sequencing revealed the complete, unambiguous primary structure of mundticin KS; mundticin KS comprises a 43-amino-acid peptide with an amino acid sequence similar to that of mundticin ATO6 produced by E. mundtii ATO6. Mundticin KS and mundticin ATO6 are distinguished by the inversion of the last two amino acids at their respective C termini. These two mundticins were expressed in Escherichia coli as recombinant peptides and found to be different in activity against certain Lactobacillus strains, such as Lactobacillus plantarum and Lactobacillus curvatus. Mundticin KS was successfully expressed by transformation with the recombinant plasmid containing the mun locus in heterogeneous hosts such as E. faecium, L. curvatus, and Lactococcus lactis. Based on our results, the mun locus is located on a 50-kb plasmid, pML1, of E. mundtii NFRI 7393.  相似文献   

18.
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 γ1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV γ2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed.  相似文献   

19.
A bacteriocin produced by Pseudomonas syringae pv. ciccaronei, used at different purification levels and concentrations in culture and in planta, inhibited the multiplication of P. syringae subsp. savastanoi, the causal agent of olive knot disease, and affected the epiphytic survival of the pathogen on the leaves and twigs of treated olive plants. Treatments with bacteriocin from P. syringae pv. ciccaronei inhibited the formation of overgrowths on olive plants caused by P. syringae subsp. savastanoi strains PVBa229 and PVBa304 inoculated on V-shaped slits and on leaf scars at concentrations of 105 and 108 CFU ml−1, respectively. In particular, the application of 6,000 arbitrary units (AU) of crude bacteriocin (dialyzed ammonium sulfate precipitate of culture supernatant) ml−1 at the inoculated V-shaped slits and leaf scars resulted in the formation of knots with weight values reduced by 81 and 51%, respectively, compared to the control, depending on the strains and inoculation method used. Crude bacteriocin (6,000 AU ml−1) was also effective in controlling the multiplication of epiphytic populations of the pathogen. In particular, the bacterial populations recovered after 30 days were at least 350 and 20 times lower than the control populations on twigs and on leaves, respectively. These results suggest that bacteriocin from P. syringae pv. ciccaronei can be used effectively to control the survival of the causal agent of olive knot disease and to prevent its multiplication at inoculation sites.  相似文献   

20.
Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). Heterologous-expression studies of enkT and ΔenkT mutant strains showed that enkT is responsible for the secretion of Ent53A, Ent53C, Ent53D, and Ent53Z, suggesting that EnkT is a wide-range ABC transporter that contributes to the effective production of these bacteriocins. In addition, EnkIaz and EnkIc were found to confer self-immunity to the respective bacteriocins. Furthermore, bacteriocin induction assays performed with the ΔenkRK mutant strain showed that EnkR and EnkK are regulatory proteins responsible for bacteriocin production and that, together with Ent53D, they constitute a three-component regulatory system. Thus, the Ent53ACDZ gene cluster is essential for the biosynthesis and regulation of NKR-5-3 enterocins, and this is, to our knowledge, the first report that demonstrates the secretion of multiple bacteriocins by an ABC transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号