首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In times of ongoing habitat fragmentation, the persistence of many species is determined by their dispersal abilities. Consequently, understanding the rules underlying movement between habitat patches is a key issue in conservation ecology. 2. We have analysed mark-release-recapture (MRR) data on inter-patches movements of the Dusky Large Blue butterfly Maculinea nausithous in a fragmented landscape in northern Bavaria, Germany. The aim of the analysis was to quantify distance dependence of dispersal as well as to evaluate the effect of target patch area on immigration probability. For statistical evaluation, we apply a 'reduced version' of the virtual migration model (VM), only fitting parameters for dispersal distance and immigration. In contrast to other analyses, we fit a mixed dispersal kernel to the MRR data. 3. A large fraction of recaptures happened in other habitat patches than those where individuals were initially caught. Further, we found significant evidence for the presence of a mixed dispersal kernel. The results indicate that individuals follow different strategies in their movements. Most movements are performed over small distances, nonetheless involving travelling between nearby habitat patches (median distance c. 480 m). A small fraction (c. 0·025) of the population has a tendency to move over larger distances (median distance c. 3800 m). Further, immigration was positively affected by patch area (I~A(ζ) ), with the scaling parameter ζ = 0·5. 4. Our findings should help to resolve the long-lasting dispute over the suitability of the negative exponential function vs. inverse-power one for modelling dispersal. Previous studies on various organisms found that the former typically gives better overall fit to empirical distance distributions, but that the latter better represents long-distance movement probabilities. As long-distance movements are more important for landscape-level effects and thus, e.g. for conservation-oriented analyses like PVAs, fitting inverse-power kernels has often been preferred. 5. We conclude that the above discrepancy may simply stem from the fact that recorded inter-patch movements are an outcome of two different processes: daily routine movements and genuine dispersal. Consequently, applying mixed dispersal kernels to disentangle the two processes is recommended.  相似文献   

2.
The time at which natural enemies colonize crop fields is an important determinant of their ability to suppress pest populations. This timing depends on the distance between source and sink habitats in the landscape. Here we estimate the time to colonization of sink habitats from a distant source habitat, using empirical mark-capture data of Diadegma semiclausum in Broccoli. The data originated from experiments conducted at two locations and dispersal was quantified by suction sampling before and after a major disturbance. Three dispersal kernels were fitted to the dispersal data: a normal, a negative exponential, and a square root negative exponential kernel. These kernels are characterized by a thin, intermediate and a fat tail, respectively. The dispersal kernels were included in an integro-difference equation model for parasitoid population redistribution to generate estimates of time to colonization of D. semiclausum in sink habitats at distances between 100 and 2000 m from a source. We show that the three dispersal kernels receive similar support from the data, but can produce a wide range of outcomes. The estimated arrival time of 1% of the D. semiclausum population at a distance 2000 m from the source ranges from 12 days to a length of time greatly exceeding the life span of the parasitoid. The square root negative exponential function, having the thickest tail among the tested functions, gave the fastest spread and colonization in three of the four data sets, but it gave the slowest redistribution in the fourth. In all four data sets, the rate of accumulation at the target increased with the mean dispersal distance of the fitted kernel model, irrespective of the fatness of the tail. This study underscores the importance of selecting a proper dispersal kernel for modelling spread and colonization time of organisms, and of the collection of pertinent data that enable kernel estimation and that can discriminate between different kernel shapes.  相似文献   

3.
We compute the mean patch occupancy for a stochastic, spatially explicit patch-occupancy metapopulation model on a dynamic, correlated landscape, using a mathematically exact perturbation expansion about a mean-field limit that applies when dispersal range is large. Stochasticity in the metapopulation and landscape dynamics gives negative contributions to patch occupancy, the former being more important at high occupancy and the latter at low occupancy. Positive landscape correlations always benefit the metapopulation, but are only significant when the correlation length is comparable to, or smaller than, the dispersal range. Our analytical results allow us to consider the importance of spatial kernels in all generality. We find that the shape of the landscape correlation function is typically unimportant, and that the variance is overwhelmingly the most important property of the colonisation kernel. However, short-range singularities in either the colonisation kernel or landscape correlations can give rise to qualitatively different behaviour.  相似文献   

4.
Evolution of local adaptations in dispersal strategies   总被引:2,自引:0,他引:2  
The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat's edge and consequently, optimal dispersal probability and distance should decline towards the habitat's border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model we investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. We compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. We conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel.  相似文献   

5.
1. Dispersal is a fundamental ecological process, so spatial models require realistic dispersal kernels. We compare five different forms for the dispersal kernel of the tansy beetle Chrysolina graminis moving between patches of its host-plant (tansy Tanacetum vulgare) in a riparian landscape. 2. Multi-patch mark-recapture data were collected every 2 weeks over 2 years within a large network of patches and from 2226 beetles. Dispersal was common (28.4% of 880 recaptures after a fortnight) and was more likely over longer intervals, out of small patches, for females and during flooding. Interpatch movement rates did not differ between years and exhibited no density dependence. Dispersal distances were similar for males and females, in both years and over all intervals, with a median dispersal distance of just 9.8 m, although a maximum of 856 m was recorded. 3. A model of dispersal, where patches competed for dispersers based on their size and distance from the beetle's source patch (scaled by the dispersal kernel) was fitted to the field data with a maximum likelihood procedure and each of five alternative kernels. The best fitting had relatively extended tails of long-distance dispersal, while Gaussian and negative exponential kernels performed worst. 4. The model suggests that females disperse more commonly than males and that both are strongly attracted to large patches but do not differ between years, which are consistent with the empirical results. Model-predicted emigration and immigration rates and dispersal phenologies match those observed, suggesting that the model captured the major drivers of tansy beetle dispersal. 5. Although negative exponential and Gaussian kernels are widely used for their simplicity, we suggest that these should not be the models of automatic choice, and that fat-tailed kernels with relatively higher proportions of long-distance dispersal may be more realistic.  相似文献   

6.
Mediterranean countries like Portugal and Spain, so far characterised by extensive traditional land use over major parts of their territories, have been less affected by species losses. However, they are facing severe changes. As a model organism we chose the butterfly Euphydryas aurinia, highly threatened in Central Europe but still common at the Iberian Peninsula, for a mark-release-recapture survey in the western Algarve. We examined key factors for stabile metapopulation systems to assess the ability of long-term survival in the increasingly fragmented landscapes of the Iberian Peninsula. The density of the examined population was high (ca. 2,200 individuals/ha). However, the MRR-based proportion of individuals moving longer distance classes showed a better fit to the negative exponential function than to the inverse power function implying restricted dispersal behaviour. The orientation pattern of short distance movements (<10 m) proved to be independent from habitat structures. In contrast, longer movements (>10 m) were strongly orientated along the main habitat axes revealing the importance of internal habitat structures for the orientation of dispersing individuals. Based on these data, we discuss the severe consequences for the fauna of the Iberian Peninsula in an increasingly fragmented and monotonous landscape.  相似文献   

7.
Quantifying dispersal, a fundamental biological process, is far from simple. Here, both direct and indirect methods were employed to estimate dispersal in an endangered butterfly species. A high and significant correlation between the dispersal patterns, generated by an inverse power function fitted to capture-mark-recapture (CMR) data on the one hand, and population genetic analyses on the other hand, was observed. Stepping-stone type movements were detected by both methods, evidence for the importance of connectivity in the studied metapopulation. These results are particularly relevant to those population and conservation biology studies where quantifying dispersal is essential for the elaboration of successful management actions.  相似文献   

8.
Characterizing patterns of larval dispersal is essential to understanding the ecological and evolutionary dynamics of marine metapopulations. Recent research has measured local dispersal within populations, but the development of marine dispersal kernels from empirical data remains a challenge. We propose a framework to move beyond point estimates of dispersal towards the approximation of a simple dispersal kernel, based on the hypothesis that the structure of the seascape is a primary predictor of realized dispersal patterns. Using the coral reef fish Elacatinus lori as a study organism, we use genetic parentage analysis to estimate self‐recruitment at a small spatial scale (<1 km). Next, we determine which simple kernel explains the observed self‐recruitment, given the influx of larvae from reef habitat patches in the seascape at a large spatial scale (up to 35 km). Finally, we complete parentage analyses at six additional sites to test for export from the focal site and compare these observed dispersal data within the metapopulation to the predicted dispersal kernel. We find 4.6% self‐recruitment (CI95%: ±3.0%) in the focal population, which is explained by the exponential kernel y = 0.915x (CI95%: y = 0.865x, y = 0.965x), given the seascape. Additional parentage analyses showed low levels of export to nearby sites, and the best‐fit line through the observed dispersal proportions also revealed a declining function y = 0.77x. This study lends direct support to the hypothesis that the probability of larval dispersal declines rapidly with distance in Atlantic gobies in continuously distributed habitat, just as it does in the Indo‐Pacific damselfishes in patchily distributed habitat.  相似文献   

9.
Understanding patterns of pollen movement at the landscape scale is important for establishing management rules following the release of genetically modified (GM) crops. We use here a mating model adapted to cultivated species to estimate dispersal kernels from the genotypes of the progenies of male-sterile plants positioned at different sampling sites within a 10 x 10-km oilseed rape production area. Half of the pollen clouds sampled by the male-sterile plants originated from uncharacterized pollen sources that could consist of both large volunteer and feral populations, and fields within and outside the study area. The geometric dispersal kernel was the most appropriate to predict pollen movement in the study area. It predicted a much larger proportion of long-distance pollination than previously fitted dispersal kernels. This best-fitting mating model underestimated the level of differentiation among pollen clouds but could predict its spatial structure. The estimation method was validated on simulated genotypic data, and proved to provide good estimates of both the shape of the dispersal kernel and the rate and composition of pollen issued from uncharacterized pollen sources. The best dispersal kernel fitted here, the geometric kernel, should now be integrated into models that aim at predicting gene flow at the landscape level, in particular between GM and non-GM crops.  相似文献   

10.
Habitat fragmentation is a major force affecting demography and genetic structure of wild populations, especially in agricultural landscapes. The land snail Cepaea nemoralis (L.) was selected to investigate the impact of habitat fragmentation on the spatial genetic structure of an organism with limited dispersal ability. Genetic and morphological patterns were investigated at a local scale of a 500 m transect and a mesoscale of 4 x 4 km in a fragmented agricultural landscape while accounting for variation in the landscape using least-cost models. Analysis of microsatellite loci using expected heterozygosity (HE), pairwise genetic distance (FST/1-FST) and spatial autocorrelograms (Moran's I) as well as shell characteristics revealed spatial structuring at both scales and provided evidence for a metapopulation structure. Genetic diversity was related to morphological diversity regardless of landscape properties. This pointed to bottlenecks caused by founder effects after (re)colonization. Our study suggests that metapopulation structure depended on both landscape features and the shape of the dispersal function. A range of genetic spatial autocorrelation up to 80 m at the local scale and up to 800 m at the mesoscale indicated leptokurtic dispersal patterns. The metapopulation dynamics of C. nemoralis resulted in a patchwork of interconnected, spatially structured subpopulations. They were shaped by gene flow which was affected by landscape features, the dispersal function and an increasing role of genetic drift with distance.  相似文献   

11.
  • 1 Emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive forest insect pest threatening more than 8 billion ash (Fraxinus spp.) trees in North America. Development of effective survey methods and strategies to slow the spread of A. planipennis requires an understanding of dispersal, particularly in recently established satellite populations.
  • 2 We assessed the dispersal of A. planipennis beetles over a single generation at two sites by intensively sampling ash trees at known distances from infested ash logs, the point source of the infestations. Larval density was recorded from more than 100 trees at each site.
  • 3 Density of A. planipennis larvae by distance for one site was fit to the Ricker function, inverse power function, and the negative exponential function using a maximum likelihood approach. The prediction of the best model, a negative exponential function, was compared with the results from both sites.
  • 4 The present study demonstrates that larval densities rapidly declined with distance, and that most larvae (88.9 and 90.3%) were on trees within 100 m of the emergence point of the adults at each site. The larval distribution pattern observed at both sites was adequately described by the negative exponential function.
  相似文献   

12.
A pertinent question in animal population ecology is the relationship between population abundance, density, and mobility. Two extreme ways to reach sufficient abundance for long-term persistence are to inhabit restricted locations at high densities, or large areas in low densities. The former case predicts low individual mobility, whereas the later predicts high one. This assumption is rarely tested using across-species comparisons, due to scarcity of data on both mobility and population sizes for multiple species. We used data on dispersal and local population densities of six butterfly species gained by mark-recapture, and data on their (relative) regional abundance obtained by walking transects in a landscape surrounding the mark-recapture sites. We correlated both local density and regional abundance against slopes of the inverse power function, appropriate for describing the shape of dispersal kernel. Local densities correlated negatively with the dispersal kernel slopes both when sexes were treated as independent data points and if treated together. For regional abundance, the correlation was also negative but only marginally significant. Our results corroborate the notion that a trade-off exists between living in dense populations and having poor dispersal, and vice versa. We link this observation to resource use by individual species, and distribution of such resources as host plants in the study landscape.  相似文献   

13.
Although juvenile dispersal is an important life history component, it remains one of the less understood ecological processes regulating the dynamics of animal populations. Lack of information about patterns of dispersal hampers the estimation of the actual status and demographic trajectory of populations, and can preclude the development of sound conservation strategies. The Eagle Owl Bubo bubo is an endangered bird species in the European Alps. Many breeding sites have been abandoned in the twentieth century, although some recovery has been reported lately. Moreover, the occupancy of traditional breeding sites across years in well-monitored Alpine populations varies a lot, this despite a relatively high breeding success at the population level. This raises concern about the long-term persistence of Alpine populations. Using conventional and satellite radiotracking, we investigated the spatio-temporal dispersal of 41 juvenile Eagle Owls originating from a population in the southwestern Swiss Alps. Our main goal was to determine dispersal distances, places and times of post-dispersal settlement. Juveniles left their parents between mid-August and mid-November. They covered, on average, 12.7 km per night (linear distance between two consecutive day roosts), often crossing high mountain ranges (up to 3,000 m altitude). The mean total distance covered by an individual during dispersal was 102 km (sum of night movements), with a maximum of 230 km. Settlement places were, on average, 46 km distant from the birth place. Our study establishes long-distance dispersal in juvenile Eagle Owls, even in a complex topography, suggesting the existence of a wide-scale metapopulation system across the northwestern Alps. This metapopulation dimension should be accounted for in conservation plans.  相似文献   

14.
Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions.  相似文献   

15.
Seed dispersal by avian frugivores is one of the key processes influencing plant spatial patterns, but may fail if there is disruption of plant–frugivore mutualisms, such as decline in abundance of dispersers, fragmentation of habitat, or isolation of individual trees. We used simulation model experiments to examine the interaction between frugivore density and behaviour and the spatial arrangement of fruiting plants and its effect on seed dispersal kernels. We focussed on two New Zealand canopy tree species that produce large fruits and are dispersed predominantly by one avian frugivore (Hemiphaga novaeseelandiae). Although the mean seed dispersal distance decreased when trees became more aggregated, there were more frugivore flights between tree clusters, consequently stretching the tails of the dispersal kernels. Conversely, when trees were less aggregated in the landscape, mean dispersal distances increased because seeds were deposited over larger areas, but the kernels had shorter tails. While there were no statistically meaningful changes in kernel parameters when frugivore density changed, decreases in density did cause a proportional reduction in the total number of dispersed seeds. However, birds were forced to move further when fruit availability and fruit ripening were low. Sensitivity analysis showed that dispersal kernels were primarily influenced by the model parameters relating to disperser behaviour, especially those determining attractiveness based on distance to candidate fruiting trees. Our results suggest that the spatial arrangement of plants plays an important role in seed dispersal processes – although tree aggregation curbed the mean seed dispersal distance, it was accompanied by occasional long distance events, and tree dispersion caused an increase in mean dispersal distance, both potentially increasing the probability of seeds finding suitable habitats for germination and growth. Even though low frugivore densities did not cause dispersal failure, there were negative effects on the quantity of seed dispersal because fewer seeds were dispersed.  相似文献   

16.
1. Long distance dispersal (LDD), or movements far beyond the occupied habitat borders, maintains the integrity of metapopulations in fragmented landscapes. Recent studies on butterflies increasingly reveal that LDD exists even in species that were long regarded as sedentary. Mark–recapture (MR) studies covering larger study areas typically reveal movements among distant colonies. 2. We studied dispersal of the EU‐protected, regionally endangered Euphydryas aurinia Rottemburg butterfly in the Czech Republic, using two complementary MR approaches. The single system study was carried out for eight seasons within 30 habitat patches covering 28 ha. The multiple populations study was carried out for a single season, but covering almost all Czech colonies of the species (82 colonies, 110 distinct patches, total area 324 ha within ca 1500 km2). 3. Single system mean lifetime movements were consistently higher for males, but slopes of dispersal kernel power functions were shallower for females, implying that higher proportions of females crossed distances of several kilometres. 4. The multiple populations study allowed detection of 51 lifetime movements exceeding 5 km (41 males, 10 females) and 14 movements exceeding 10 km (13 males, 1 female). Both mean lifetime movements and slopes of the dispersal kernels varied among systems, with no consistent pattern between sexes. All Czech Republic populations are within 0.1% movement probability of both sexes, whereas 1% movement probability delimits three separate management units. 5. Dispersal predictions from local data underestimate total mobility, warning against the use of local MR data for extrapolating long‐distance movements. Local dispersal data, however, remain useful for analysing finer details of insect mobility.  相似文献   

17.
We present a Bayesian hierarchical model for the joint spatial dynamics of a host-parasite system. The model was fitted to long-term data on regional plague dynamics and metapopulation dynamics of the black-tailed prairie dog, a declining keystone species of North American prairies. The rate of plague transmission between colonies increases with increasing precipitation, while the rate of infection from unknown sources decreases in response to hot weather. The mean annual dispersal distance of plague is about 10 km, and topographic relief reduces the transmission rate. Larger colonies are more likely to become infected, but colony area does not affect the infectiousness of colonies. The results suggest that prairie dog movements do not drive the spread of plague through the landscape. Instead, prairie dogs are useful sentinels of plague epizootics. Simulations suggest that this model can be used for predicting long-term colony and plague dynamics as well as for identifying which colonies are most likely to become infected in a specific year.  相似文献   

18.
The analysis of animal movement within different landscapes may increase our understanding of how landscape features affect the perceptual range of animals. Perceptual range is linked to movement probability of an animal via a dispersal kernel, the latter being generally considered as spatially invariant but could be spatially affected. We hypothesize that spatial plasticity of an animal''s dispersal kernel could greatly modify its distribution in time and space. After radio tracking the movements of walking insects (Cosmopolites sordidus) in banana plantations, we considered the movements of individuals as states of a Markov chain whose transition probabilities depended on the habitat characteristics of current and target locations. Combining a likelihood procedure and pattern-oriented modelling, we tested the hypothesis that dispersal kernel depended on habitat features. Our results were consistent with the concept that animal dispersal kernel depends on habitat features. Recognizing the plasticity of animal movement probabilities will provide insight into landscape-level ecological processes.  相似文献   

19.
The size and shape of the tail of the seed dispersal curve is important in determining the spatial dynamics of plants, but is difficult to quantify. We devised an experimental protocol to measure long-distance dispersal which involved measuring dispersal by wind from isolated individuals at a range of distances from the source, but maintaining a large and constant sampling intensity at each distance. Seeds were trapped up to 80 m from the plants, the furthest a dispersal curve for an individual plant has been measured for a non-tree species. Standard empirical negative exponential and inverse power models were fitted using likelihood methods. The latter always had a better fit than the former, but in most cases neither described the data well, and strongly under-estimated the tail of the dispersal curve. An alternative model formulation with two kernel components had a much better fit in most cases and described the tail data more accurately. Mechanistic models provide an alternative to direct measurement of dispersal. However, while a previous mechanistic model accurately predicted the modal dispersal distance, it always under-predicted the measured tail. Long-distance dispersal may be caused by rare extremes in horizontal wind speed or turbulence. Therefore, under-estimation of the tail by standard empirical models and mechanistic models may indicate a lack of flexibility to take account of such extremes. Future studies should examine carefully whether the widely used exponential and power models are, in fact, valid, and investigate alternative models. Received: 7 March 1999 / Accepted: 2 April 2000  相似文献   

20.
A J Moore 《Heredity》2013,110(1):1-2
Analyzing population dynamics in changing habitats is a prerequisite for population dynamics forecasting. The recent development of metapopulation modeling allows the estimation of dispersal kernels based on the colonization pattern but the accuracy of these estimates compared with direct estimates of the seed dispersal kernel has rarely been assessed. In this study, we used recent genetic methods based on parentage analysis (spatially explicit mating models) to estimate seed and pollen dispersal kernels as well as seed and pollen immigration in fragmented urban populations of the plant species Crepis sancta with contrasting patch dynamics. Using two independent networks, we documented substantial seed immigration and a highly restricted dispersal kernel. Moreover, immigration heterogeneity among networks was consistent with previously reported metapopulation dynamics, showing that colonization was mainly due to external colonization in the first network (propagule rain) and local colonization in the second network. We concluded that the differences in urban patch dynamics are mainly due to seed immigration heterogeneity, highlighting the importance of external population source in the spatio-temporal dynamics of plants in a fragmented landscape. The results show that indirect and direct methods were qualitatively consistent, providing a proper interpretation of indirect estimates. This study provides attempts to link genetic and demographic methods and show that patch occupancy models may provide simple methods for analyzing population dynamics in heterogeneous landscapes in the context of global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号