首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crustacean hyperglycemic hormone (CHH) has many functions to regulate carbohydrate metabolism, ecdysis and reproduction including ion transport in crustaceans. The cDNA encoding CHH peptides containing 369 bp open reading frame encoding 122 amino acids was cloned from eyestalk of white shrimp (Litopenaeus vannamei) and was produced by a bacterial expression system. The biological activity of recombinant L. vannamei crustacean hyperglycemic hormone (rLV-CHH) was tested. The hemolymph glucose level of shrimp increased two-fold at 1h after the rLV-CHH injection and then returned to normal after 3h. In addition to the effect of rLV-CHH administration (25 μg/shrimp) on immunological responses of white shrimp against pathogenic bacteria, Vibrio harveyi was studied. Results showed that the blood parameters of shrimp injected with rLV-CHH; the THC, PO activity, serum protein level and clearance ability to V. harveyi, were also higher than those of Neg-protein and PBS-injected shrimp. The survival of shrimp injected with rLV-CHH was significantly higher (66.0%) than shrimp that injected with Neg-protein (33.3%) and PBS (28.9%) after 14 days. It is possible that the administration of rLV-CHH in L. vannamei exhibited a higher immune response related to resistance against V. harveyi infection.  相似文献   

2.
The structure of a well-known neurohormone involved in homeostasis regulation and stress response, the crustacean hyperglycemic hormone, was investigated in the deep-sea hydrothermal vent crab Bythograea thermydron. The neuropeptide was isolated from neurohemal organs (sinus glands) and its biological activity checked using an homologous bioassay. Partial amino acid sequence was established by a combination of Edman chemistry and mass spectrometry. Then, the sequence of the cDNA encoding the hormone precursor was determined. The preprohormone is composed of a 29 amino acid signal peptide, followed by a 41 amino acid associated peptide flanking the 72 amino acid hyperglycemic hormone. Comparison of these data with other known crab hyperglycemic hormone and prohormone sequences was performed using phylogenetic analysis methods.  相似文献   

3.
Crustacean hyperglycemic hormone (CHH), a physiologically important neurohormone stored in the sinus gland of eyestalks, primarily regulates carbohydrate metabolism and also plays significant roles in reproduction, molting and other physiological processes. In the freshwater giant prawn, Macrobrachium rosenbergii, an injection of X-organ sinus gland (XOSG) extract evoked a hyperglycemic response, peaked in 1 h. The hyperglycemic effect of the eyestalk extract was maximal at the dose of 0.5 eyestalk equivalent. CHH fractionated by RP-HPLC, in M. rosenbergii was identified by its hyperglycemic activity and partial amino acid sequence, and the molecular weight of 8534 was determined by matrix-assisted laser desorption ionization mass spectrometry--time of flight analysis (MALDI-TOF). The amino acid sequence of the first 25 residues of CHH showed 72% homology with the first 25 residues of CHH A and CHH B of the American lobster Homarus americanus.  相似文献   

4.
We have isolated a 72-amino acid peptide from extracts of sinus glands of the South African rock lobster, Jasus lalandii, and identified it, functionally and immunologically, as a hyperglycemic hormone. This is the second peptide with hyperglycemic activity found in this palinurid species and, because it occurs in smaller quantities (approximately 3 pmol/sinus gland) than the previously identified hyperglycemic hormone [14], this minor isoform is designated Jala cHH-II. The complete elucidation of the primary structure of cHH-II, as determined by automated Edman degradation of the N-terminus enzymatic digests of the non-reduced peptide, chemical cleavage and mass spectrometry, is presented here. Jala cHH-II (molecular mass of 8357 Da) is more hydrophobic than Jala cHH-I (8380 Da). The two cHHs have a free N-terminus a blocked C-terminus; and share 90% sequence homology. We also present structural data of a further two peptides isolated from sinus gland extracts that were immunopositive to cHH antisera. These peptides, with masses of 7665 and 7612 Da, structurally represent C-terminally truncated forms of the major and the minor Jala cHH peptides, respectively, but do not have any hyperglycemic activity in vivo. We demonstrate that the prevalence of these truncated forms can be reduced by the addition of proteases to the homogenization buffer during preparation of the tissues.  相似文献   

5.
The effects of dopamine (DA) on crustacean hyperglycemic hormone (CHH) release and osmoregulation were investigated in the white shrimp Litopenaeus vannamei. Application of 2 μg of the recombinant CHH-B1His hormone or 2?×?10?6 mol L?1 of DA to intact shrimp caused an increase in the hemolymph glucose levels 1 h post-injection, suggesting that DA might stimulate hyperglycemia through CHH release from the sinus glands. This assumption was supported by similar experiments using bilaterally eyestalk-ablated shrimp. Additionally, rCHH-B1His restored the osmoregulatory capacity (OC) of shrimp under hyperosmotic conditions to basal values 2 h post-injection, whereas DA led to an OC decrease in shrimp at all sampling times. These neuroendocrine factors may be involved in the control of metabolism and osmoregulation in L. vannamei and could be important for its adaptation to different environmental conditions.  相似文献   

6.
Mandibular organs (MO) produce a crustacean juvenile hormone, methyl farnesoate (MF). MO activity is negatively regulated by factors, called mandibular organ inhibiting hormones (MOIHs), from the crustacean sinus gland X-organ complex in the eyestalks. Three MOIHs have been isolated previously from the spider crabLibinia emarginata and are characterized as members of the crustacean hyperglycemic hormone (CHH) neuropeptide family. In the research reported here, a full length cDNA sequence of 972 bp of a MOIH was isolated by screening a cDNA library constructed from the eyestalks ofLibinia emarginata. This cDNA sequence encodes a preprohormone peptide with 137 amino acid residues, including a 26-amino acid long signal peptide, a 34-amino acid long precursor peptide, a dibasic peptide, the full length of 72-amino acid long MOIH, and a tri-peptide Gly-Lys-Lys which designates the potential amidation site at the C-terminus of the mature peptide.  相似文献   

7.
Marco HG  Hansen IA  Scheller K  Gäde G 《Peptides》2003,24(6):845-851
A cDNA, encoding a crustacean hyperglycemic hormone (cHH) of the South African spiny lobster, Jasus lalandii has been cloned. The cDNA consists of 1773 bp with an open reading frame of 399 bp that encodes a preprohormone of 133 amino acid residues. The preprohormone consists of a 25 amino acid hydrophobic signal peptide, a 32 amino acid cHH precursor-related peptide (CPRP) and the cHH sequence of 72 amino acid residues. The cHH sequence is flanked N-terminally by a Lys-Arg cleavage site and C-terminally by Gly-Lys, where Gly serves as an amidation site. The deduced amino acid sequence of the CPRP is in complete agreement with a peptide previously elucidated from sinus glands of J. lalandii, code-named CPRP 2 and the sequence of the cHH peptide matches that of the minor cHH isoform of J. lalandii, i.e. crustacean hyperglycemic hormone-II (cHH-II), which was also previously obtained by peptide sequencing. In situ hybridization on eyestalks revealed strong cHH-II mRNA expression in a subset of neurosecretory cells of the X-organ.  相似文献   

8.
Putative moult-inhibiting hormone (MIH) was isolated from sinus glands of the shore crab Carcinus maenas, and its primary structure determined by automated Edman degradation of endoproteinase derived peptide fragments. MIH is a 78 residue neuropeptide (deduced molecular mass 9181 Da) with three disulphide bridges and unblocked N- and C-termini. MIH shows some homology to the crustacean hyperglycemic hormone (CHH) neuropeptide family. However, consideration of the roles of various members of this group, together with sequence information recently reported, strongly suggests that these neuropeptides may be multifunctional.  相似文献   

9.
Marco HG  Stoeva S  Voelter W  Gäde G 《Peptides》2000,21(9):1313-1321
We have isolated a peptide from extracts of sinus glands from a South African spiny lobster species, Jasus lalandii, by high-performance liquid chromatography (HPLC) and identified it as a putative molt-inhibiting hormone (MIH) by (i) an in vitro assay with J. lalandii Y-organs to measure the inhibition of ecdysteroid synthesis and (ii) an immunoassay using antiserum raised against MIH of the edible crab. The MIH of J. lalandii has 74 amino acid residues, a molecular mass of 9006 Da, a free N-terminus and an amidated C-terminus. The full primary sequence has been obtained from sequencing various digest fragments (tryptic, endoproteinase Asp-N, cyanogen bromide) of the unreduced (native) peptide: RFTFDCPGMMGQRYLYEQVEQVCDDCYNLYREEKIAVNCRENCFLNSWFTVCLQATMREHETPRFDIWR SIILKA-NH(2). Structural comparisons with other peptides show that the J. lalandii MIH belongs to the peptide family which includes the crustacean hyperglycemic hormone, molt-inhibiting hormone and vitellogenesis-inhibiting hormone (cHH/MIH/VIH). This novel peptide has 36-43% sequence identity to putative MIHs from other decapod crustaceans and 32-34% identity to the two cHH peptides previously identified in this spiny lobster species. This is the first report of a peptide with MIH activity in the Palinuridae infraorder.  相似文献   

10.
Crustacean Hyperglycemic Neuropeptides   总被引:4,自引:2,他引:2  
The neurosecretory structures in the crustacean eyestalk areconsidered to be the source of factors regulating a considerablevariety of physiological processes. Although many hormonal "factors"have been postulated, only a few have been characterized indetail. Two pigmentary effector regulating neuropeptides havebeen completely characterized. A third substance, the hyperglycemichormone, has been isolated and characterized in terms of aminoacid composition. It is larger than the pigmentary effectorhormones (mol wt 6,000–7,000) and it is the first of theheretofore described invertebrate neurohormones that containsdisulfide bridges. Unlike the pigmentary effector hormones,the hyperglycemic neuropeptide exhibits species or systematicgroup specificity, recognizable by differences in amino acidcompositions and also expressed by lack of interspecific (orintergroup) biological activity. An antiserum permitted thedevelopment of a radioimmunoassay and immunocytochemical demonstrationof the hormone producing perikarya in decapods and in an isopod.Large immunopositive perikarya form a distinct group in themedulla terminalis ganglionic X-organ. This group sends a conspicuoustract of axons to the neurohemal organ, the sinus gland, wherethe hormone is stored in large quantities. It is believed tobe necessary for the regulation of resting levels of blood sugarand for elevation of blood sugar in situations of physiologicalneed. In general, however, the physiological mode of actionof the hormone is largely unknown.  相似文献   

11.
Five novel neuropeptides, designated Pm-sgp-I to -V, of the crustacean hyperglycemic hormone (CHH) family have been identified from the giant tiger prawn Penaeus monodon by isolation of the preprohormone genes from an eyestalk complementary DNA library. On the basis of sequence similarity, the encoded peptides have been classified as CHH-like type I hormones, which include all known CHHs and the molt-inhibiting hormone (MIH) of the lobster Homarus americanus. Consistent with CHH type I preprohormones, the Pm-sgp precursors include a signal peptide, a CHH precursor-related peptide (CPRP), and the CHH-like hormone. Analysis by electrospray ionization-Fourier transform mass spectrometry enabled the neuropeptide complement of individual sinus glands to be resolved. It also confirmed the presence of the five Pm-sgp neuropeptides within the sinus gland of an individual animal, in that the masses observed were consistent with those predicted from the gene sequence of the Pm-sgps after posttranslational modification. These modifications included cleavage of the signal peptide and precursor protein, carboxy-terminal amidation, and formation of three disulfide bridges. Analysis of crude extracts of single sinus glands from different animals revealed variation in neuropeptide content and will provide a tool for determining whether the content varies as a function of the physiological state of the animal. Received March 26, 1999; accepted September 10, 1999.  相似文献   

12.
Crustacean hyperglycemic hormone (CHH) plays a major role in controlling glucose level in the haemolymph and also triggers important events during molting and reproductive cycles. In Penaeus monodon, three types of CHH, namely Pem-CHH1, Pem-CHH2 and Pem-CHH3, have been previously characterized. In this study, mouse polyclonal antibody was raised against recombinant Pem-CHH1 that was expressed in Escherichia coli. The anti-Pem-CHH1 antibody recognized all three types of Pem-CHHs but did not cross-react with either related hormone, molt-inhibiting hormone of P. monodon, or unrelated human growth hormone. The hyperglycemic activity in the extract from the eyestalk neural tissues was significantly depleted after incubating with anti-Pem-CHH antibody. Direct injection of the antibody into shrimp caused about 30-50% reduction in the haemolymph glucose level. The result demonstrates the ability of anti-Pem-CHH1 antibody to deplete the activity of CHH in vivo, and thus provides a possibility of using anti-Pem-CHH1 antibody to inhibit the hormone activity as a strategy to modulate growth and reproduction in this species.  相似文献   

13.
14.
甲壳动物高血糖激素家族生理功能研究进展   总被引:6,自引:1,他引:5  
甲壳动物高血糖激素家族是甲壳动物特有的神经多肽激素家族,主要由眼柄的X-器窦腺复合体(XO-SG)合成与分泌,包括高血糖激素(CHH)、蜕皮抑制激素(MIH)、性腺抑制激素(GIH)和大颚器抑制激素(MOIH),协同调控着甲壳动物的生长、繁殖与蜕皮等生理生化过程.本文就目前CHH家族神经肽的功能研究,包括功能研究的方法、各个激素的功能以及分泌调控等研究进展作一综述.  相似文献   

15.
Bioassay analysis of extracts of the major neurosecretory structures of the American lobster have revealed several different agents with stimulatory effects on the cyclic GMP metabolism of various lobster tissues. The most potent of these is a peptide extracted from the sinus gland, a neurohemal organ found in the animal's eyestalk. This molecule, called peptide G1 (for its effects on cyclic GMP metabolism), can increase the cyclic GMP content of every lobster tissue tested, sometimes by as much as 200-fold. In this article, we describe the purification and some of the chemical properties of peptide G1. Purification was accomplished by sequential anion exchange and reverse-phase HPLC. The purified peptide is a large, extremely hydrophobic molecule. Its apparent molecular mass on a reducing sodium dodecyl sulfate-containing gel is 6.4 kDa, and its calculated molecular mass (based on an amino acid analysis of the purified material) is 8.2 kDa. Amino acid analysis reveals a high proportion of leucine and valine residues. The amino terminus of the molecule is not susceptible to Edman degradation, but sequencing studies were successfully carried out on tryptic fragments. Based on the estimated size of the molecule, these studies provide approximately 60% of the total sequence. No homologies with any previously sequenced peptide were observed, but biochemical similarities to as yet unsequenced peptides found in extracts of sinus glands from other crustaceans (hyperglycemic hormone and moult-inhibiting hormone) are described.  相似文献   

16.
A hydrophobic peptide of 71 residues was isolated from lobster sinus gland extracts that prolonged intermolt periods and lowered ecdysteroid titers in juvenile lobsters. Removal of the N-terminal pyroglutamyl residue allowed sequencing of 30 of the first 36 residues. Additional data were obtained from HPLC-purified fragments from endoproteinase cleavages (Lys-C, Glu-C, Arg-C, Asp-N), and carboxypeptidase Y digestion. This is the first reported amino acid sequence of a crustacean molt-inhibiting hormone. This peptide also has significant hyperglycemic activity.  相似文献   

17.
Vitellogenesis-inhibiting hormone (VIH) in Crustacea belongs to the crustacean hyperglycemic hormone (CHH)-family. To characterize multiple VIH molecules in the whiteleg shrimp Litopenaeus vannamei, seven CHH-family peptides designated as Liv-SGP-A, -B, -C, -D, -E, -F, and -G were purified by reversed-phase HPLC and identified by N-terminal amino acid sequencing. The dose-response effects of these peptides on vitellogenin mRNA levels were examined using in vitro incubation of ovarian fragments of the kuruma prawn Marsupenaeus japonicus. Liv-SGP-D showed no significant inhibitory activities, while the other six peptides significantly reduced vitellogenin mRNA levels, however, with differing efficacies, in the order of Liv-SGP-C, -F, -G > -A, -B > -E. Liv-SGP-G was the most abundant CHH-family peptide in the sinus gland and showed strong vitellogenesis-inhibiting activity. As a result of detailed structural analysis, its complete primary structure was determined; it consisted of 72 amino acid residues and possesses an amidated C-terminus. Tsutsui and Ohira contributed equally to this work.  相似文献   

18.
The crustacean hyperglycemic hormone (CHH) is synthesized as part of a larger preprohormone in which the sequence of CHH is N-terminally flanked by a peptide for which the name CPRP (CHH precursor-related peptide) is proposed. Both CHH and CPRP are present in the sinus gland, the neurohemal organ of neurosecretory cells located in the eyestalk of decapod crustaceans. This paper describes the isolation and sequence analysis of CPRPs isolated from sinus glands of the crab Carcinus maenas, the crayfish Orconectes limosus and the lobster Homarus americanus. The published sequence of "peptide H" isolated from the land crab, Cardisoma carnifex, has now been recognized as a CPRP in this species. Sequence comparison reveals a high level of identity for the N-terminal region (residues 1-13) between all four peptides, while identity in the C-terminal domain is high between lobster and crayfish CPRP on the one hand, and between both crab species on the other. Conserved N-terminal residues include a putative monobasic processing site at position 11, which suggests that CPRP may be a biosynthetic intermediate from which a potentially bioactive decapeptide can be derived.  相似文献   

19.
Summary Antiserum raised in rabbits against extracts of sinus glands from Carcinus and shown by several criteria to contain antibodies directed against the neurosecretory hyperglycemic hormone was used to locate the hormone-producing perikarya in the optic ganglia. By means of the double antibody fluorescence technique, selective staining of the large neurosecretory perikarya of the medulla terminalis ganglionic X-organ (MTGXO) and their axons is obtained. The axon endings of the sinus gland are also stained. None of the other groups of neurosecretory cells in the eyestalk shows fluorescence. Preabsorption of the antiserum with pure hyperglycemic hormone abolishes the fluorescence.Supported by the Deutsche Forschungsgemeinschaft (SFB 87, A 3; Ke 206/2). Thanks are due to E. Schmid (Ulm) for excellent technical assistance and to Prof. R. Martin and E. Weber for help and suggestions. A short version of parts of the results has been presented at theXth Conference of European Comparative Endocrinologists, Sorrento, May 1979  相似文献   

20.
The sinus gland is a major neurosecretory structure in Crustacea. Five peptides, labeled C, D, E, F, and I, isolated from the sinus gland of the land crab have been hypothesized to arise from the incomplete proteolysis at two internal sites on a single biosynthetic intermediate peptide "H", based on amino acid composition additivities and pulse-chase radiolabeling studies. The presence of only a single major precursor for the sinus gland peptides implies that peptide H may be synthesized on a common precursor with crustacean hyperglycemic hormone forms, "J" and "L," and a peptide, "K," similar to peptides with molt inhibiting activity. Here I report amino acid sequences of these peptides. The amino terminal sequence of the parent peptide, H, (and the homologous fragments) proved refractory to Edman degradation. Data from amino acid analysis and carboxypeptidase digestion of the naturally occurring fragments and of fragments produced by endopeptidase digestion were used together with Edman degradation to obtain the sequences. Amino acid analysis of fragments of the naturally occurring "overlap" peptides (those produced by internal cleavage at one site on H) was used to obtain the sequences across the cleavage sites. The amino acid sequence of the land crab peptide H is Arg-Ser-Ala-Asp-Gly-Phe-Gly-Arg-Met-Glu-Ser-Leu-Leu-Thr-Ser-Leu-Arg-Gly- Ser-Ala-Glu- Ser-Pro-Ala-Ala-Leu-Gly-Glu-Ala-Ser-Ala-Ala-His-Pro-Leu-Glu. In vivo cleavage at one site involves excision of arginine from the sequence Leu-Arg-Gly, whereas cleavage at the other site involves excision of serine from the sequence Glu-Ser-Leu. Proteolysis at the latter sequence has not been previously reported in intact secretory granules. The aspartate at position 4 is possibly covalently modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号