首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Like its vertebrate homologues, Xenopus wnt-8 and murine wnt-1, we find that Drosophila wingless (wg) protein causes axis duplication when overexpressed in embryos of Xenopus laevis after mRNA injection. In many cases, the secondary axes contain eyes and cement glands, which reflect the induction of the most dorsoanterior mesodermal type, prechordal mesoderm. We show that the extent of axis duplication is dependent on the embryonic site of expression, with ventral expression leading to a more posterior point of axis bifurcation. The observed duplications are due to de novo generation of new axes as shown by rescue of UV-irradiated embryos. The true dorsal mesoderm-inducing properties of wg protein are indicated by its ability to generate extensive duplications after mRNA injection into D-tier cells of 32-cell embryos. As revealed by lineage mapping, the majority of these D cell progeny populate the endoderm; injections into animal blastomeres at this stage are far less effective in inducing secondary axes. However, when expressed in isolated animal cap explants, wg protein induces only ventral mesoderm, unless basic fibroblast growth factor is added, whereupon induction of muscle and occasionally notochord is seen. We conclude that in intact embryos, wg acts in concert with other factors to cause axis duplication. Immunolocalisation studies in embryos indicate that wg protein remains localised to the blastomeres synthesizing it and has a patchy, often perinuclear distribution within these cells, although some gets to the surface. In oocytes, the pool of wg protein is entirely intracellular and relatively unstable. When the polyanion suramin is added, most of the intracellular material is recovered in the external medium.  相似文献   

2.
Jones WM  Bejsovec A 《Genetics》2005,169(4):2075-2086
The Wingless (Wg)/Wnt signal transduction pathway directs a variety of cell fate decisions in developing animal embryos. Despite the identification of many Wg pathway components to date, it is still not clear how these elements work together to generate cellular identities. In the ventral epidermis of Drosophila embryos, Wg specifies cells to secrete a characteristic pattern of denticles and naked cuticle that decorate the larval cuticle at the end of embryonic development. We have used the Drosophila ventral epidermis as our assay system in a series of genetic screens to identify new components involved in Wg signaling. Two mutant lines that modify wg-mediated epidermal patterning represent the first loss-of-function mutations in the RacGap50C gene. These mutations on their own cause increased stabilization of Armadillo and cuticle pattern disruptions that include replacement of ventral denticles with naked cuticle, which suggests that the mutant embryos suffer from ectopic Wg pathway activation. In addition, RacGap50C mutations interact genetically with naked cuticle and Axin, known negative regulators of the Wg pathway. These phenotypes suggest that the RacGap50C gene product participates in the negative regulation of Wg pathway activity.  相似文献   

3.
Wnt genes are often expressed in overlapping patterns, where they affect a wide array of developmental processes. To address the way in which various Wnt signals elicit distinct effects we compared the activities of two Wnt genes in Drosophila, DWnt-4, and wingless. We show that these Wnt signals produce distinct responses in cells of the dorsal embryonic epidermis. Whereas wingless acts independently of hedgehog signaling in these cells, we show that DWnt-4 requires Hh to elicit its effects. We also show that expression of Wg signal transduction components does not mimic expression of DWnt-4, suggesting that DWnt-4 signaling proceeds through a distinct pathway. The dorsal epidermis may therefore be useful in the identification of novel Wnt signaling components. Received: 16 August 1999 / Accepted: 19 August 1999  相似文献   

4.
The highly conserved Wnt family of growth factors is essential for generating embryonic pattern in many animal species [1]. In the fruit fly Drosophila, most Wnt-mediated patterning is performed by a single family member, Wingless (Wg), acting through its receptors Frizzled (Fz) and DFrizzled2 (Dfz2). In the ventral embryonic epidermis, Wg signaling generates two different cell-fate decisions: the production of diverse denticle types and the specification of naked cuticle separating the denticle belts. Mutant alleles of wg disrupt these cellular decisions separately [2], suggesting that some aspect of ligand-receptor affinity influences cell-fate decisions, or that different receptor complexes mediate the distinct cellular responses. Here, we report that overexpression of Dfz2, but not Fz, rescues the mutant phenotype of wgPE2, an allele that produces denticle diversity but no naked cuticle. Fz was able to substitute for Dfz2 only under conditions where the Wg ligand was present in excess. The wgPE2 mutant phenotype was also sensitive to the dosage of glycosaminoglycans, suggesting that the mutant ligand is excluded from the receptor complex when proteoglycans are present. We conclude that wild-type Wg signaling requires efficient interaction between ligand and the Dfz2-proteoglycan receptor complex to promote the naked cuticle cell fate.  相似文献   

5.
The tumor suppressor adenomatous polyposis coli (APC) negatively regulates Wingless (Wg)/Wnt signal transduction by helping target the Wnt effector beta-catenin or its Drosophila homologue Armadillo (Arm) for destruction. In cultured mammalian cells, APC localizes to the cell cortex near the ends of microtubules. Drosophila APC (dAPC) negatively regulates Arm signaling, but only in a limited set of tissues. We describe a second fly APC, dAPC2, which binds Arm and is expressed in a broad spectrum of tissues. dAPC2's subcellular localization revealed colocalization with actin in many but not all cellular contexts, and also suggested a possible interaction with astral microtubules. For example, dAPC2 has a striking asymmetric distribution in neuroblasts, and dAPC2 colocalizes with assembling actin filaments at the base of developing larval denticles. We identified a dAPC2 mutation, revealing that dAPC2 is a negative regulator of Wg signaling in the embryonic epidermis. This allele acts genetically downstream of wg, and upstream of arm, dTCF, and, surprisingly, dishevelled. We discuss the implications of our results for Wg signaling, and suggest a role for dAPC2 as a mediator of Wg effects on the cytoskeleton. We also speculate on more general roles that APCs may play in cytoskeletal dynamics.  相似文献   

6.
IQGAP1 contains a number of protein recognition motifs through which it binds to targets. Several in vitro studies have documented that IQGAP1 interacts directly with calmodulin, actin, E-cadherin, beta-catenin, and the small GTPases Cdc42 and Rac. Nevertheless, direct demonstration of in vivo function of mammalian IQGAP1 is limited. Using a novel assay to evaluate in vivo function of IQGAP1, we document here that microinjection of IQGAP1 into early Xenopus embryos generates superficial ectoderm lesions at late blastula stages. This activity was retained by the mutated variants of IQGAP1 in which the calponin homology domain or the WW domain was deleted. By contrast, deletion of the IQ (IQGAP1-DeltaIQ), Ras-GAP-related (IQGAP1-DeltaGRD), or C-terminal (IQGAP1-DeltaC) domains abrogated the effect of IQGAP1 on the embryos. None of the latter mutants bound Cdc42, suggesting that the binding of Cdc42 by IQGAP1 is critical for its function. Moreover, overexpression of IQGAP1, but not IQGAP1-DeltaGRD, significantly increased the amount of active Cdc42 in embryonic cells. Co-injection of wild type IQGAP1 with dominant negative Cdc42, but not the dominant negative forms of Rac or Rho, blocked the effect of IQGAP1 on embryonic ectoderm. Together these data indicate that the activity of IQGAP1 in embryonic ectoderm requires Cdc42 function.  相似文献   

7.
Telomerase activity in germline and embryonic cells of Xenopus.   总被引:14,自引:1,他引:14       下载免费PDF全文
Telomerase is a ribonucleoprotein which synthesizes telomere repeats onto chromosome ends. Telomerase activity is involved in telomere length maintenance. We used Xenopus laevis as a model system to study the expression of telomerase activity in germline cells and during early development. We identified a non-processive telomerase activity in manually dissected nuclei of Xenopus stage VI oocytes. Telomerase activity was detected throughout oogenesis and embryogenesis. Telomerase was active in both S and M phase cell cycle extracts, suggesting that telomerase activity is not regulated with chromosomal DNA replication.  相似文献   

8.
The process of lens cell determination in amphibians is currently viewed as one involving a series of inductive interactions. On the basis of previous investigations, these interactions are thought to begin during gastrulation when the presumptive foregut endoderm and then the heart mesoderm come into contact with the presumptive lens ectoderm. This earlier period of induction is followed by the later interaction of the optic vesicle with the lens-forming ectoderm. Transplantation experiments were performed to determine the relative significance of the early and later periods of induction in the process of lens cell determination in the anuran Xenopus laevis. Various ectodermal tissues were transplanted either into the lens-forming region of open neural plate stage host embryos or over the newly formed optic vesicle of later neurula stage embryos. All transplanted tissues were labeled with the intracellular marker horseradish peroxidase to assess the exact origins of any induced lens structures. The results indicate that all nonneural ectodermal tissues have some lens-forming potential early during gastrulation; however, this potential is restricted to the lens-forming region, and perhaps nearby regions, later in development during the time of neurulation. Furthermore, the results show that the optic vesicle is not a substantial inductor of the lens in tissues that have not been previously exposed to the earlier series of inductive interactions that take place during gastrulation and neurulation. Since the optic vesicle does not appear to be a sufficient inductor of the lens, these earlier inductive interactions are, therefore, essential in the process of lens cell determination in Xenopus. These earlier inductive interactions lead to a steady increase in what may be called a lens-forming bias in the presumptive lens ectoderm during this period of development. The eventual loss in the ability of nonlens ventral ectoderm to respond to these lens inductors is presumably the result of other determinative processes that occur in this tissue.  相似文献   

9.
The frequencies and potentialities of hematopoietic stem cells from 20-hr-old Xenopus embryos were examined by transplanting cytogenetically distinct ventral blood island tissue from diploid to triploid embryos. Thirty-five-day-old larvae were examined for the presence of donor-derived cells in their erythrocyte, thymocyte, and B lymphocyte populations by analyzing DNA content using flow cytometry. These experiments demonstrated that B lymphocytes, as well as erythrocytes and thymocytes, were derived from the ventral blood island. Data obtained by transplanting graded sized pieces of ventral blood island suggested that restricted erythroid precursors were present within the region by 20 hr postfertilization. Differentiation of both B- and T-lymphoid precursors from small pieces of ventral blood island was markedly enhanced when this tissue was grafted onto peripheral areas within the blood island region. Analysis of these data using repopulation statistics suggested that circulating larval erythrocytes of ventral blood island origin were derived from six or seven precursors. Each lobe of the thymus was colonized by three precursors, one of which was ventral blood island derived.  相似文献   

10.
11.
12.
Roles of wingless in patterning the larval epidermis of Drosophila.   总被引:12,自引:0,他引:12  
The larval epidermis of Drosophila shows a stereotyped segmentally repeating pattern of cuticular structures. Mutants deficient for the wingless gene product show highly disrupted patterning of the larval cuticle. We have manipulated expression of the wg gene product to assess its role in this patterning process. We present evidence for four distinct phases of wg function in epidermal cells: (1) an early requirement in engrailed-expressing cells to establish and maintain stable expression of en, (2) a discrete period when wg and en gene products act in concert to generate positional values in the anterior portion of the ventral segment and all values of the dorsal and lateral epidermis, (3) a progressive function (dependent on prior interaction with the en-expressing cells) in conferring positional values to cells within the posterior portion of the segment, and (4) a late continuous requirement for maintaining some ventral positional values.  相似文献   

13.
14.
The segment polarity gene wingless encodes a cysteine rich protein which is essential for pattern formation in Drosophila. Using polyclonal antibodies against the product of the wingless gene, we demonstrate that this protein is secreted in the embryo and that it is taken up by neighbouring cells. The protein can be found two or three cell diameters away from the cells in which it is synthesized. We discuss the possible mechanisms which are responsible for this spatial distribution and its regulation during embryogenesis.  相似文献   

15.
Bone morphogenetic protein-4 (BMP-4) induces epidermis and represses neural fate in Xenopus ectoderm. Our previous findings implicate p42 Erk MAP kinase (MAPK) in the response to neural induction. We have examined the effects of BMP-4 on MAPK activity in gastrula ectoderm. Expression of a dominant negative BMP-4 receptor resulted in a 4.5-fold elevation in MAPK activity in midgastrula ectoderm. MAPK activity was reduced in ectoderm expressing a constitutively active BMP-4 receptor, or ectoderm treated with BMP-4 protein in the presence or absence of cycloheximide. Overexpression of TAK1 led to a reduction in MAPK activity in early gastrula ectoderm. The inhibitory effects of TAK1 could be reversed by 1 microM SB 203580, a p38 inhibitor. Treatment of isolated ectoderm with SB 203580 led to expression of otx2, NCAM, and noggin. Western blot analyses indicated that the BMP-4 pathway does not activate JNKs in ectoderm. Our findings indicate that BMP-4 inhibits ectodermal MAPK activity through a TAK1/p38-type pathway. MAPK has been shown to inactivate Smad1. Thus, our results suggest that BMP-4 and MAPK pathways are mutually antagonistic in Xenopus ectoderm, and that interactions between these pathways may govern the choice between epidermal and neural fate.  相似文献   

16.
17.
Xenopus p63 expression in early ectoderm and neurectoderm   总被引:9,自引:0,他引:9  
The tumor-suppressor protein p53 belongs to a small gene family that includes p63 and p73. While p53 and p73 regulate cell cycle progression and apoptosis, the major role of p63 appears to be in promoting ectodermal proliferation and differentiation. In this report we describe the cloning of a Xenopus orthologue of mammalian p63 that is extraordinarily conserved in sequence. The major sites of expression of Xenopus p63 mRNA are the epidermis and some neural crest and crest derivatives such as the branchial arches and tail fin. Expression is also observed in the neural plate and in the stomodeal-hypophyseal anlage. Antibodies against p63 detect a nuclear protein that is distributed in a manner similar to that of Xp63 mRNA. Both mRNA and protein are conspicuously absent from regions of the epidermal sensorial layer that are induced to form a number of (but not all) ectodermal placodes and Xp63 protein levels are particularly dynamic in the epidermis of the eye as the lens forms.  相似文献   

18.
The segment polarity gene wingless has an essential function in cell-to-cell communication during various stages of Drosophila development. The wingless gene encodes a secreted protein that affects gene expression in surrounding cells but does not spread far from the cells where it is made. In larvae, wingless is necessary to generate naked cuticle in a restricted part of each segment. To test whether the local accumulation of wingless is essential for its function, we made transgenic flies that express wingless under the control of a hsp70 promoter (HS-wg flies). Uniform wingless expression results in a complete naked cuticle, uniform armadillo accumulation and broadening of the engrailed domain. The expression patterns of patched, cubitus interruptus Dominant and Ultrabithorax follow the change in engrailed. The phenotype of heatshocked HS-wg embryos resembles the segment polarity mutant naked, suggesting that embryos that overexpress wingless or lack the naked gene enter similar developmental pathways. The ubiquitous effects of ectopic wingless expression may indicate that most cells in the embryo can receive and interpret the wingless signal. For the development of the wild-type pattern, it is required that wingless is expressed in a subset of these cells.  相似文献   

19.
Active endocytotic processes are required for the normal distribution of Wingless (Wg) protein across the epidermal cells of each embryonic segment. To assess the functional consequences of this broad Wg distribution, we have devised a means of perturbing endocytosis in spatially restricted domains within the embryo. We have constructed a transgene expressing a dominant negative form of shibire (shi), the fly dynamin homologue. When this transgene is expressed using the GAL4-UAS system, we find that Wg protein distribution within the domain of transgene expression is limited and that Wg-dependent epidermal patterning events surrounding the domain of expression are disrupted in a directional fashion. Our results indicate that Wg transport in an anterior direction generates the normal expanse of naked cuticle within the segment and that movement of Wg in a posterior direction specifies diverse denticle cell fates in the anterior portion of the adjacent segment. Furthermore, we have discovered that interfering with posterior movement of Wg rescues the excessive naked cuticle specification observed in naked (nkd) mutant embryos. We propose that the nkd segment polarity phenotype results from unregulated posterior transport of Wg protein and therefore that wild-type Nkd function may contribute to the control of Wg movement within the epidermal cells of the segment.  相似文献   

20.
The gene wingless (wg) in Drosophila is an important factor in leg development. During embryonic development wg is involved in the allocation of the limb primordia. During imaginal disk development wg is involved in distal development and it has a separate role in ventral development. The expression pattern of wg is highly conserved in all arthropods (comprising data from insects, myriapods, crustaceans, and chelicerates), suggesting that its function in leg development is also conserved. However, recent work in other insects (e.g. the milkweed bug Oncopeltus fasciatus) argued against a role of wg in leg development. We have studied the role of wg in leg development of the flour beetle Tribolium castaneum. Using stage-specific staggered embryonic RNAi in wild-type and transgenic EGFP expressing enhancer trap lines we are able to demonstrate separable functions of Tribolium wg in distal and in ventral leg development. The distal role affects all podomeres distal to the coxa, whereas the ventral role is restricted to cells along the ventral midline of the legs. In addition, severe leg defects after injection into early embryonic stages are evidence that wg is also involved in proximal development and limb allocation in Tribolium. Our data suggest that the roles of wg in leg development are highly conserved in the holometabolous insects. Further studies will reveal the degree of conservation in other arthropod groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号