首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic sialidase (neuraminidase 2; Neu2) is an enzyme whose expression increases during myoblast differentiation. Here we show that insulin-like growth factor 1 (IGF1)-induced hypertrophy of myoblasts notably increases Neu2 synthesis by activation of the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (P13K/AKT/mTOR) pathway, whereas the proliferative effect mediated by activation of the extracellular regulated kinase 1/2 (ERK1/2) pathway negatively contributed to Neu2 activity. Accordingly, the differentiation L6MLC/IGF-1 cell line, in which the forced postmitotic expression of insulin-like growth factor 1 stimulates a dramatic hypertrophy, was accompanied by a stronger Neu2 increase. Indeed, the hypertrophy induced by transfection of a constitutively activated form of AKT was able to induce high Neu2 activity in C2C12 cells, whereas the transfection of a kinase-inactive form of AKT prevented myotube formation, triggering Neu2 downregulation. Neu2 expression was strictly correlated with IGF-1 signaling also in C2 myoblasts overexpressing the insulin-like growth factor 1 binding protein 5 and therefore not responding to endogenously produced insulin-like growth factor 1. Although Neu2-transfected myoblasts exhibited stronger differentiation, we demonstrated that Neu2 overexpression does not override the block of differentiation mediated by PI3 kinase and mTOR inhibitors. Finally, Neu2 overexpression did not modify the ganglioside pattern of C2C12 cells, suggesting that glycoproteins might be the target of Neu2 activity. Taken together, our data demonstrate that IGF-1-induced differentiation and hypertrophy are driven, at least in part, by Neu2 upregulation and further support the significant role of cytosolic sialidase in myoblasts.  相似文献   

2.
3.
4.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

5.
6.
干扰Sirt2促进C2C12成肌细胞分化   总被引:1,自引:0,他引:1  
Sirt2是组蛋白去乙酰化酶(HDAC III)家族成员之一, 对细胞周期、自噬、脂肪细胞分化、神经细胞存活等生物学过程的调节发挥重要作用. 目前,Sirt2在肌肉发育过程中的研究尚未见报道.本文通过构建Sirt2慢病毒干扰载体,侵染C2C12成肌细胞,并用细胞免疫荧光化学、real-time PCR 和Western印迹方法,检测其对成肌分化标志基因及相关信号通路因子的影响. 结果显示,干扰质粒shRNA 663处理C2C12细胞后,Sirt2 mRNA及蛋白质表达水平与对照相比显著下调(P<0.01);C2C12细胞分化第4 d,MyoD,MyoG,MyHC mRNA及蛋白质表达均显著增加(P<0.01); PI3K,AKT,FoxO1磷酸化水平明显升高. 结果表明,Sirt2可通过PI3K/AKT/FOXO1信号通路来促进成肌细胞分化,是肌生成的一个潜在调节因子.  相似文献   

7.
8.
Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.  相似文献   

9.
10.
Rat cytosolic sialidase is expressed at elevated levels in skeletal muscle and is believed to play a role in the myogenic differentiation of muscle cells. Here, we observed varying levels of enhancement of sialidase activity in the presence a range of divalent cations. In particular, a significant enhancement of activity was observed in the presence of Ca2+. Conversely, inhibition of the sialidase activity was found when the enzyme was incubated in the presence of Cu2+, EDTA, and a range of carbohydrate-based inhibitors. Finally, an investigation of the enzymatic hydrolysis of a synthetic substrate, 4-methylumbelliferyl N-acetyl-alpha-D-neuraminide, by 1H NMR spectroscopy revealed that the reaction catalysed by rat skeletal muscle cytosolic sialidase proceeds with overall retention of anomeric configuration. This result further supports the notion that all sialidases appear to be retaining enzymes.  相似文献   

11.
Recently, miR-22 was found to be differentially expressed in different skeletal muscle growth period, indicated that it might have function in skeletal muscle myogenesis. In this study, we found that the expression of miR-22 was the most in skeletal muscle and was gradually up-regulated during mouse myoblast cell (C2C12 myoblast cell line) differentiation. Overexpression of miR-22 repressed C2C12 myoblast proliferation and promoted myoblast differentiation into myotubes, whereas inhibition of miR-22 showed the opposite results. During myogenesis, we predicted and verified transforming growth factor beta receptor 1 (TGFBR1), a key receptor of the TGF-β/Smad signaling pathway, was a target gene of miR-22. Then, we found miR-22 could regulate the expression of TGFBR1 and down-regulate the Smad3 signaling pathway. Knockdown of TGFBR1 by siRNA suppressed the proliferation of C2C12 cells but induced its differentiation. Conversely, overexpression of TGFBR1 significantly promoted proliferation but inhibited differentiation of the myoblast. Additionally, when C2C12 cells were treated with different concentrations of transforming growth factor beta 1 (TGF-β1), the level of miR-22 in C2C12 cells was reduced. The TGFBR1 protein level was significantly elevated in C2C12 cells treated with TGF-β1. Moreover, miR-22 was able to inhibit TGF-β1-induced TGFBR1 expression in C2C12 cells. Altogether, we demonstrated that TGF-β1 inhibited miR-22 expression in C2C12 cells and miR-22 regulated C2C12 cell myogenesis by targeting TGFBR1.  相似文献   

12.
13.
Addition of nordihydroguaiaretic acid (NDGA) to the differentiation medium of C2C12 mouse myoblast cells caused severe inhibition of the formation of myotubes and suppressed differentiation-dependent elevation in the levels of the creatine kinase M isozyme (CKM). Under these conditions, NDGA did not cause significant increase of damaged cells, as detected by annexin-V-FITC assay, or induction of heat shock proteins, known to be a response against extracellular stress. The results suggest that NDGA itself is not toxic but can effectively blocks the differentiation-dependent increase of CKM during C2C12 differentiation. The levels of muscle specific bHLH proteins MyoD, Myf5, and myogenin were also decreased by addition of NDGA, indicating a block of the initial step of the myogenesis through downregulation of muscle specific genes. NDGA is known to be a lipoxygenase inhibitor but other examples, like MK-886 and CDC, did not exert the same effects on differentiation of muscle cells, indicating that mechanisms of NDGA action are independent of its influence on lipoxygenase.  相似文献   

14.
The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion.  相似文献   

15.
MicroRNAs are a class of 18–22 nucleotide non-coding RNAs that modulate gene expression by associating with the 3′ untranslated regions of mRNAs. A large number of microRNAs are involved in the regulation of myoblast differentiation, many of which remain undiscovered. In this study, we found that miR-143-3p was upregulated during C2C12 myoblast differentiation and over-expression of miR-143-3p significantly inhibited the relative expression levels of MyoD, MyoG, myf5, and MyHC genes, especially in the later stages of differentiation. In addition, miR-143-3p inhibited expression of genes involved in the endogenous Wnt signaling pathway during C2C12 myoblast differentiation, including Wnt5a, LRP5, Axin2, and β-catenin. These results indicate that miR-143-3p represents a new myogenic differentiation-associated microRNA that can inhibit C2C12 myoblast differentiation, especially in the later stages of differentiation.  相似文献   

16.
MicroRNAs (miRNAs) are small non-coding RNAs that participate in diverse biological processes including skeletal muscle development. MiR-214 is an miRNA that is differentially expressed in porcine embryonic muscle and adult skeletal muscle, suggesting that miR-214 may be related to embryonic myogenesis. In this study, the myoblast cell line C2C12 was used for functional analysis of miR-214 in vitro. The results showed that miR-214 was expressed both in myoblasts and in myotubes and was upregulated during differentiation. After treatment with an miR-214 inhibitor and culturing in differentiation medium, myoblast differentiation was repressed, as indicated by the significant downregulation of expression of the myogenic markers myogenin and myosin heavy chain (MyHC). Interestingly, myoblast proliferation was also repressed when cells were transfected with an miR-214 inhibitor and cultured in growth medium by real-time proliferation assay and cell cycle analysis. Our results showed that miR-214 regulates both proliferation and differentiation of myoblasts depending on the conditions.  相似文献   

17.
利用Tet-on(Tetracycline-on)基因表达系统,通过强力霉素(doxycycline,DOX)诱导Runx2基因在C2C12细胞中的表达,探究Runx2促成骨分化功能,为其分子机制的研究提供一个理想的实验平台.先后将调控质粒pTet-on和反应质粒pTRE-Flag-Runx2转染入C2C12细胞,并用G418和潮霉素分别进行2轮筛选,运用实时荧光定量PCR选择对强力霉素诱导敏感的细胞克隆.用不同浓度DOX诱导C2C12/Tet/pTRE-Flag-Runx2细胞,蛋白免疫印迹检测Runx2的表达,确定DOX的最佳诱导浓度与时间,并检测C2C12细胞的成骨分化能力.结果表明,诱导细胞最佳DOX浓度为10μg/ml;最佳诱导时间为12h;诱导后Runx2基因高表达,C2C12细胞向成骨方向分化(P0.05).成功建立Tet调控Runx2基因表达C2C12细胞系,为进一步研究Runx2基因功能分子机制提供理想的细胞模型.  相似文献   

18.
19.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   

20.
Go  Shiori  Sato  Chihiro  Hane  Masaya  Go  Shinji  Kitajima  Ken 《Glycoconjugate journal》2022,39(5):619-631
Glycoconjugate Journal - A transition of sialic acid (Sia) species on GM3 ganglioside from N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc) takes place in mouse C2C12 myoblast...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号