首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization, intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic Escherichia coli, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by E. coli virulence factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both E. coli pathogenesis and cell biology, and the rich prospects for exploiting these bacterial factors as versatile tools to probe cellular signalling pathways.  相似文献   

2.
The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.  相似文献   

3.
Many bacteria that cause disease have the capacity to enter into and live within eukaryotic cells such as epithelial cells and macrophages. The mechanisms used by these organisms to achieve and maintain this intracellular lifestyle vary considerably, but most mechanisms involve subversion and exploitation of host cell functions. Entry into non-phagocytic cells involves triggering host signal transduction mechanisms to induce rearrangement of the host cytoskeleton, thereby facilitating bacterial uptake. Once inside the host cell, intracellular pathogens either remain within membrane bound inclusions or escape to the cytoplasm. Those living in the cytoplasm can further pirate the host actin system, using actin as a mechanism to facilitate movement within and between host cells. Organisms remaining within the vacuole have specialized mechanisms for intracellular survival and growth which involve additional communication with the host cell. Some of the processes involved in the various steps of facultative intracellular parasitism are discussed in the context of subverting the host cell cytoskeleton and signal transduction pathways for bacterial benefit.  相似文献   

4.
Bacterial pathogens often harbour a type III secretion system (TTSS) that injects effector proteins into eukaryotic cells to manipulate host processes and cause diseases. Identification of host targets of bacterial effectors and revealing their mechanism of actions are crucial for understating bacterial virulence. We show that EspH, a type III effector conserved in enteric bacterial pathogens including enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli and Citrobacter rodentium, markedly disrupts actin cytoskeleton structure and induces cell rounding up when ectopically expressed or delivered into HeLa cells by the bacterial TTSS. EspH inactivates host Rho GTPase signalling pathway at the level of RhoGEF. EspH directly binds the DH‐PH domain in multiple RhoGEFs, which prevents their binding to Rho and thereby inhibits nucleotide exchange‐mediated Rho activation. Consistently, infection of mouse macrophages with EPEC harbouring EspH attenuates phagocytosis of the bacteria as well as FcγR‐mediated phagocytosis. EspH represents the first example of targeting RhoGEFs by bacterial effectors, and our results also reveal an unprecedented mechanism used by enteric pathogens to counteract the host defence system.  相似文献   

5.
Hijacking of eukaryotic functions by intracellular bacterial pathogens.   总被引:4,自引:0,他引:4  
Intracellular bacterial pathogens have evolved as a group of microorganisms endowed with weapons to hijack many biological processes of eukaryotic cells. This review discusses how these pathogens perturb diverse host cell functions, such as cytoskeleton dynamics and organelle vesicular trafficking. Alteration of the cytoskeleton is discussed in the context of the bacterial entry process (invasion), which occurs either by activation of membrane-located host receptors ("zipper" mechanism) or by injection of bacterial proteins into the host cell cytosol ("trigger" mechanism). In addition, the two major types of intracellular lifestyles, cytosolic versus intravacuolar (phagosomal), which are the consequence of alterations in the phagosome-lysosome maturation route, are compared. Specific examples illustrating known mechanisms of mimicry or hijacking of the host target are provided. Finally, recent advances in phagosome proteomics and genome expression in intracellular bacteria are described. These new technologies are yielding valuable clues as to how these specialized bacterial pathogens manipulate the mammalian host cell.  相似文献   

6.
Many bacterial pathogens manipulate the host cell cytoskeleton during infection. Such cytoskeletal modulation can occur at several points of contact between the pathogen and the host, and involves extracellular receptors, intracellular signal transduction and cytoskeletal proteins themselves. The field of bacterial pathogenesis has progressed dramatically over the past decade, such that structural knowledge is both timely and essential for a full appreciation of the biology at the pathogen-host interface. Several recent examples involving bacterial proteins that target actin, Rho family GTPases and extracellular receptors have contributed to a structural understanding of eukaryotic cytoskeletal modulation by pathogens.  相似文献   

7.
A variety of bacterial intracellular pathogens target the host cell ubiquitin system during invasion, a process that involves transient but fundamental changes in the actin cytoskeleton and plasma membrane. These changes are induced by bacterial proteins, which can be surface associated, secreted or injected directly into the host cell. Here, the invasion strategies of two extensively studied intracellular bacteria, Salmonella enterica serovar Typhimurium and Listeria monocytogenes, are used to illustrate some of the diverse ways by which bacterial pathogens intersect the host cell ubiquitin pathway.  相似文献   

8.
Invasive Salmonella trigger their own uptake into non-phagocytic eukaryotic cells by delivering virulence proteins that stimulate signaling pathways and remodel the actin cytoskeleton. It has recently emerged that Salmonella encodes two actin-binding proteins, SipC and SipA, which together efficiently nucleate actin polymerization and stabilize the resulting supramolecular filament architecture. Therefore, Salmonella might directly initiate actin polymerization independently of the cellular Arp2/3 complex early in the cell entry process. This is an unprecedented example of a direct intervention strategy to facilitate entry of a pathogen into a target cell. Here, we discuss the Salmonella actin-binding proteins and how they might function in combination with entry effectors that stimulate Rho GTPases. We propose that membrane-targeted bacterial effector proteins might trigger actin polymerization through diverse mechanisms during cell entry by bacterial pathogens.  相似文献   

9.
Pathogen trafficking pathways and host phosphoinositide metabolism   总被引:1,自引:0,他引:1  
Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila , Brucella abortus , Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.  相似文献   

10.
The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.  相似文献   

11.
The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years,research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens,including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. B4 ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.  相似文献   

12.
The Bacterial Actin-Like Cytoskeleton   总被引:13,自引:0,他引:13       下载免费PDF全文
Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.  相似文献   

13.
In the recent decade, our view on the organization of the bacterial cell has been revolutionized by the identification of cytoskeletal elements. Most bacterial species have structural homologs of actin and tubulin that assemble into dynamic, filamentous structures at precisely defined sub-cellular locations. The essential cell division protein FtsZ forms a dynamic ring at mid-cell and is similar in its structure to tubulin. Proteins of the MreB family, which are structural homologs of actin, assemble into helical or straight filaments in the bacterial cytoplasm. As in eukaryotic cells, the bacterial cytoskeleton drives essential cellular processes such as cell division, cell wall growth, DNA movement, protein targeting, and alignment of organelles. Different high-throughput assays have been developed to search for inhibitors of components of the bacterial cytoskeleton. Cell-based assays for the detection of cell division inhibitors as well as FtsZ GTPase assays led to the identification of several compounds that inhibit the polymerization of FtsZ, by this blocking bacterial cell division. Such inhibitors might not only be valuable tools for basic research, but might also lead to novel therapeutic agents against pathogenic bacteria. For example, the polyphenol dichamanetin, the 2-alkoxycarbonylaminopyridine SRI-3072, and the benzophenanthridine alkaloid sanguinarine inhibit the GTPase activity of FtsZ and exhibit antimicrobial activity.  相似文献   

14.
Small GTPases of the Rho protein family are master regulators of the actin cytoskeleton and are targeted by potent virulence factors of several pathogenic bacteria. Their dysfunctional regulation can lead to severe human pathologies. Both host and bacterial factors can activate or inactivate Rho proteins by direct post‐translational modifications: such as deamidation and transglutamination for activation, or ADP‐ribosylation, glucosylation, adenylylation and phosphorylation for inactivation. We review and compare these unconventional ways in which both host cells and bacterial pathogens regulate Rho proteins.  相似文献   

15.
Common infection strategies of plant and animal pathogenic bacteria   总被引:11,自引:0,他引:11  
Gram-negative bacterial pathogens use common strategies to invade and colonize plant and animal hosts. In many species, pathogenicity depends on a highly conserved type-III protein secretion system that delivers effector proteins into the eukaryotic cell. Effector proteins modulate a variety of host cellular pathways, such as rearrangements of the cytoskeleton and defense responses. The specific set of effectors varies in different bacterial species, but recent studies have revealed structural and functional parallels between some effector proteins from plant and animal pathogenic bacteria. These findings suggest that bacterial pathogens target similar pathways in plant and animal host cells.  相似文献   

16.
CAS/Crk signalling mediates uptake of Yersinia into human epithelial cells   总被引:4,自引:2,他引:2  
Uptake of Yersinia pseudotuberculosis into mammalian cells involves engagement of β1 integrin receptors by the bacterial protein invasin. This triggers a host response that involves tyrosine phosphorylation of proteins and the induction of actin rearrangements that lead to cellular uptake of bacteria. In this report, we show that the focal adhesion protein CAS plays an important role in Yersinia uptake, and that its function is linked to the phosphorylation-dependent interaction between CAS and Crk. These studies demonstrate that Yersinia binding to host cell receptors initiates a cascade of events involving tyrosine phosphorylation of CAS, subsequent formation of functional CAS–Crk complexes and the activity of the small GTP-binding protein Rac1. The delineation of this pathway lends support for a model in which Yersinia uptake into human epithelial cells is dependent upon aspects of host signalling pathways that govern actin cytoskeleton remodelling and cell migration.  相似文献   

17.
Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes.  相似文献   

18.
Actin and tubulin are the major components of the cytoskeleton that pervades the cytoplasm of all eukaryotic cells. These proteins were traditionally thought not to be present in prokaryotes, but structural and functional homologues of tubulin (FtsZ) and actin (MreB) are now known to be present virtually throughout the eubacteria and in some archae. FtsZ protein is a key player in cell division of bacteria and some eukaryotic organelles. MreB proteins are involved in the regulation of cell shape and the segregation of some bacterial plasmids, and might have a range of other functions. Recent data demonstrate that the bacterial proteins are, like their eukaryotic counterparts, highly dynamic. Here, we review the general properties and functions of actin and tubulin homologues in bacteria, their dynamic behaviour and the implications for understanding cell division and morphogenesis in bacteria.  相似文献   

19.
Neutrophils are cells of the innate immune system that hunt and kill pathogens using directed migration. This process, known as chemotaxis, requires the regulation of actin polymerization downstream of chemoattractant receptors. Reciprocal interactions between actin and intracellular signals are thought to underlie many of the sophisticated signal processing capabilities of the chemotactic cascade including adaptation, amplification and long-range inhibition. However, with existing tools, it has been difficult to discern actin''s role in these processes. Most studies investigating the role of the actin cytoskeleton have primarily relied on actin-depolymerizing agents, which not only block new actin polymerization but also destroy the existing cytoskeleton. We recently developed a combination of pharmacological inhibitors that stabilizes the existing actin cytoskeleton by inhibiting actin polymerization, depolymerization and myosin-based rearrangements; we refer to these processes collectively as actin dynamics. Here, we investigated how actin dynamics influence multiple signalling responses (PI3K lipid products, calcium and Pak phosphorylation) following acute agonist addition or during desensitization. We find that stabilized actin polymer extends the period of receptor desensitization following agonist binding and that actin dynamics rapidly reset receptors from this desensitized state. Spatial differences in actin dynamics may underlie front/back differences in agonist sensitivity in neutrophils.  相似文献   

20.
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号