首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
NADH-cytochrome b5 reductase (b5R) is a member of a flavoenzyme family of dehydrogenases-electron transferases that participates in the transfer of electrons from the NADH generated in glycolysis to cytochrome b5. b5R is involved in the steady-state reduction of methemoglobin to hemoglobin in erythrocytes and is also involved in lipid metabolism in other cell types. In a search for mutations of the b5R gene in two unrelated African-American families, a high-frequency polymorphism was detected in the propositi from both families, as well as unrelated normal controls, consisting of a C-to-G transversion in exon 5 that changes threonine to serine at codon 116 (T116S). This is the first polymorphism found in the b5R gene. Using allele-specific PCR on the two propositi, their family members, and unselected populations of African-American, Caucasian, Asian, Indo-Aryan, and Arabic individuals, the C/G polymorphism was found in 26 of 112 African-American chromosomes (allele frequency = 0.23), but not in 108 Caucasian, 46 Asian, 44 Indo-Aryan, or 14 Arabic chromosomes. In preliminary studies, this polymorphism did not correlate with b5R enzyme activity or cause any disease phenotype. It remains to be determined whether this African-specific polymorphism that apparently originated recently in human evolution provides any special survival advantage. Received: 11 April 1996 / Revised: 13 May 1996, 9 August 1996  相似文献   

4.
Propylthiouracil, a selective inhibitor of NADH-cytochrome b5 reductase   总被引:1,自引:0,他引:1  
E Lee  K Kariya 《FEBS letters》1986,209(1):49-51
Propylthiouracil inhibited the activity of NADH-cytochrome b5 reductase of rat liver microsomes using potassium ferricyanide as electron acceptor. On the other hand, NADPH-cytochrome P-450 reductase activity was not affected by the compound. NADH-supported reduction of cytochrome b5 was also inhibited by propylthiouracil in the reconstituted system consisting of cytochrome b5 and partially purified NADH-cytochrome b5 reductase.  相似文献   

5.
6.
T Iyanagi  S Watanabe  K F Anan 《Biochemistry》1984,23(7):1418-1425
The one-electron oxidation-reduction properties of flavin in hepatic NADH-cytochrome b5 reductase were investigated by optical absorption spectroscopy, electron paramagnetic resonance (EPR), and potentiometric titration. An intermediate with a peak at 375 nm previously described by Iyanagi (1977) [ Iyanagi , T. (1977) Biochemistry 16, 2725-2730] was confirmed to be a red anionic semiquinone. The NAD+-bound reduced enzyme was oxidized by cytochrome b5 via the semiquinone intermediate. This indicates that electron transfer from flavin to cytochrome b5 proceeds in two successive one-electron steps. Autoxidation of the NAD+-bound reduced enzyme was slower than that of the NAD+-free reduced enzyme and was accompanied by the appearance of an EPR signal. Midpoint redox potentials of the consecutive one-electron-transfer steps in the presence of excess NAD+ were Em,1 = -88 mV and Em,2 = 147 mV at pH 7.0. This corresponds to a semiquinone formation constant of 8. The values of Em,1 and Em,2 were also studied as a function of pH. A mechanism for electron transfer from NADH to cytochrome b5 is discussed on the basis of the one-electron redox potentials of the enzyme and is compared with the electron-transfer mechanism of NADPH-cytochrome P-450 reductase.  相似文献   

7.
8.
A NADH-cytochrome c reductase activity was increased upon mitogen stimulation of human lymphocytes. The activity was not inhibited by antimycin A or rotenone but was specifically inhibited by antibodies elicited against rat liver NADH-cytochrome b5 reductase or cytochrome b5. The activity was linear with cellular homogenates up to 5.2 × 106 cells/ml and had abroad pH optimum of 7.7. The presence of 3-methylcholanthrene in mitogen stimulation media had no effect on the NADH-cytochrome c reductase activity but differentially induced the benzo(a)pyrene hydroxylase (AHH) activity. The reductase activity was present in nonstimulated cells and appears not to be significantly increased in activity per cell upon mitogen-stimulation of the peripheral lymphocyte.  相似文献   

9.
NADH-cytochrome b5 reductase from hog gastric microsomes was studied with respect to substrate dependence, optimum pH, thermal denaturation as well as anti-cytochrome b5 antibodies and different ions. The reduction of potassium ferricyanide by the enzyme was specific for NADH. Using potassium ferricyanide or trypsin-solubilized liver cytochrome b5 (Tb5) as substrates, enzyme activity was inhibited by ADP and to a lesser extent by ATP. Tb5- (but not ferricyanide-) reductase was activated by ionic strength up to 0.05 ion equivalent per liter and inhibited at higher strengths whatever the ion used (Cl-, Na+, Ca2+, Mg2+). Enzyme solubilization occurred with Triton X100. The solubilization increased the Tb5- (but not the ferricyanide-) reductase activity up to a Triton:protein ratio of 15. We therefore suggest that gastric microsomes contain a Triton soluble membrane-bound NADH cytochrome b5 reductase which is in many respects similar to the liver and red cell enzymes.  相似文献   

10.
The reduction of flavin in hepatic NADH-cytochrome b5 reductase by the hydrated electron (eaq-) was investigated by pulse radiolysis. The eaq- reduced the flavin of NADH-cytochrome b5 reductase to form the red semiquinone between pH 5 and 9. The spectrum of the red semiquinone differs from that of enzyme reduced by dithionite in the presence of NAD+. After the first phase of the reduction, conversion of the red to blue semiquinone was observed at acidic pH. Resulting products are the blue (neutral) or red (anionic) semiquinone or a mixture of the two forms. The pK value for this flavin radical was approximately 6.3. Subsequently, the semiquinone form reacted by dismutation to form the oxidized and the fully reduced forms of the enzyme with a rate constant of 1 x 10(3) M-1 s-1 at pH 7.1. In the presence of NAD+, eaq- reacted with NAD+ to yield NAD(.). Subsequently, NAD. transferred an electron to NAD+-bound oxidized enzyme to form the blue and red semiquinone or mixture of the two forms of the enzyme, where pK value of this flavin radical was approximately 6.3. The blue semiquinone obtained at acidic pH was found to convert to the red semiquinone with a first order rate constant of 90 s-1, where the rates were not affected by pH or the concentration of NAD+. The final product is NAD+-bound red semiquinone of the enzyme.  相似文献   

11.
NADH-cytochrome b5 reductases purified from bovine erythrocytes and from bovine brain and liver microsomes solubilized with lysosomal protease were subjected to structural analysis by using HPLC mapping, amino acid analysis of the resulting peptides, and NH2-terminal sequence analysis of apoproteins. HPLC maps of the tryptic peptides derived from these enzymes were very similar to each other, and amino acid analysis of the HPLC-separated peptides indicated that the structures of these enzymes are identical except for the NH2-terminal region. The NH2-terminal sequence of the brain enzyme determined by automated Edman degradation was as follows: NH2-Phe-Gln-Arg-Ser-Thr-Pro-Ala-Ile-Thr-Leu-Glu-Asn-Pro-Asp- Ile-Lys-Tyr-Pro-Leu-Arg-Leu-Ile-Asp-Lys-Glu-Val-Ile- This sequence is identical to that of liver enzyme except that the liver enzyme started at the 3rd Arg or 4th Ser. The NH2-terminal amino acid residue of the soluble erythrocyte enzyme was not detected by automated Edman degradation. The sequence analysis of a tryptic peptide from the erythrocyte enzyme indicated that Leu is present before the NH2-terminal Phe of the brain enzyme. The recently reported sequence of the apparently identical protein (Ozols et al. (1985) J. Biol. Chem. 260, 11953-11961) differs in two amino acid assignments from our sequence.  相似文献   

12.
A water-soluble carbodiimide has been used to promote the formation of amide bonds between carboxyl residues on cytochrome b5 and lysyl residues on cytochrome b5 reductase. The visible and UV absorption spectrum of the purified cross-linked complex was identical with the sum of the spectra of the individual enzymes, and the average apparent molecular weight of the complex, determined by sodium dodecyl sulfate-gel electrophoresis, was within 12% of the sum of the apparent molecular weights of the two monomeric enzymes, indicating that the cross-linked derivative was a dimer containing one molecule each of cytochrome b5 and cytochrome b5 reductase. When reconstituted into phospholipid vesicles, the amphipathic derivative showed substantially reduced Vmax values with the soluble electron acceptors potassium ferricyanide, cytochrome b5 heme peptide and cytochrome c, and with the membrane-bound acceptors amphipathic cytochrome b5 and stearyl-CoA desaturase. The soluble catalytic fragment of the derivative, produced by limited digestion with subtilisin Carlsberg, showed similar decreases in Vmax values with the above soluble acceptors. In contrast, intradimer electron transfer in the soluble fragment, measured by stopped flow spectrophotometry at 2 degrees C was very efficient. Ninety per cent of the cytochrome b5 in the derivative was reduced with a first order rate constant of 51 s-1 upon the addition of NADH; the transfer of electrons from NADH to the reductase FAD prosthetic group, which is known to be the rate-limiting step in the reductase reaction mechanism, proceeded with an apparent rate constant of 57 s-1 under these conditions. These kinetic data show that the enzymes in the complex are cross-linked together at the surfaces involved in protein-protein contacts during electron transfer in an orientation similar to that assumed during electron transfer between the free proteins.  相似文献   

13.
14.
15.
Amino acid sequence of NADH-cytochrome b5 reductase of human erythrocytes   总被引:4,自引:0,他引:4  
The amino acid sequence of soluble NADH-cytochrome b5 reductase purified from normal human erythrocytes was determined as one approach to understand the hereditary disease of a deficiency of this enzyme. The protein is hydrophilic as a whole, but two regions, from Phe-36 to Ile-71 and from Met-231 to Phe-275, were found to be highly hydrophobic. The sequence of the latter region is particularly unique, and rich in proline (20%). The sequence of the amino-terminal region was very similar to the partial sequences of the corresponding regions of the enzymes from pig and steer liver microsomes.  相似文献   

16.
The soluble catalytic domain of NADH-cytochrome b5 reductase was radiolabeled with [14C]N-ethylmaleimide. Reaction for a limited time resulted in incorporation of 0.41 eq of N-ethylmaleimide and loss of 36% of the enzyme activity. Chromatography on a 5'-ADP affinity column separated the reductase which was modified with N-ethylmaleimide from the unreacted enzyme; the isolated derivative constituted 37% of the total material, was completely inactivated, and contained 1.00 eq of N-ethylmaleimide. Cyanogen bromide cleavage of the derivative demonstrated that radioactivity was limited to a single peptide which contained both Cys-283 and Cys-297. Tryptic hydrolysis of this cyanogen bromide peptide showed that the radioactivity was associated with Cys-283. Automated sequenator analysis confirmed that Cys-283 was the radiolabeled residue. These data demonstrate unambiguously that Cys-283 provides the essential thiol group of cytochrome b5 reductase.  相似文献   

17.
Bovine brain microsomal NADH-cytochrome b5 (cyt. b5) reductase [EC 1.6.2.2] was solubilized by digestion with lysosomes, and purified 8,500-fold with a 20% recovery by procedures including affinity chromatography on 5'-AMP-Sepharose 4B. The purified enzyme showed one band of a molecular weight of 31,000 on polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS). Polyacrylamide gel electrophoresis of the purified enzyme without SDS revealed a major band with a faint minor band, both of which exhibited NADH-cyt. b5 reductase activity. The isoelectric points of these components were 6.0 (major) and 6.3 (minor). The apparent Km values of the purified enzyme for NADH and ferricyanide were 1.1 and 4.2 microM, respectively. The apparent Km value for cyt. b5 was 14.3 microM in 10 mM potassium phosphate buffer (pH 7.5). The apparent Vmax value was 1,190 mumol cyt. b5 reduced/min/mg of protein. The NADH-cyt. b5 reductase activity of the purified enzyme was inhibited by sulfhydryl inhibitors and flavin analogues. Inhibition by phosphate buffer or other inorganic salts of the enzyme activity of the purified enzyme was proved to be of the competitive type. These properties were similar to those of NADH-cyt. b5 reductase from bovine liver microsomes or rabbit erythrocytes, although the estimated enzyme content in brain was about one-twentieth of that in liver (per g wet tissue). An immunochemical study using an antibody to purified NADH-cyt. b5 reductase bovine liver microsomes indicated that NADH-cyt. b5 reductase from brain microsomes is immunologically identical to the liver microsomal enzyme.  相似文献   

18.
19.
Incubation of liposomes prepared by sonication of egg lecithin with the amphipathic form of cytochrome b5 results in the binding of a maximum of 244 molecules of cytochrome b5 per liposomal vesicle. Interactions of the phospholipid with the hydrophobic segment of cytochrome b5 are involved in this binding which does not disrupt the liposome. When a small amount of NADH-cytochrome b5 reductase is bound liposomes simultaneously with cytochrome b5, the two proteins catalyze the reduction of cytochrome c by NADH. A qualitative kinetic analysis reveals that all of the cytochrome b5 interacts with reductase, a result consistent with these protein undergoing translational diffusion in the plane of the membrane. This system and the purified stearyl coenzyme A desaturase provide a model to study the dynamics of protein andlipid interactions in this membrane-bound oxidative sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号