首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intestinal absorption of benzyl beta-glucoside (BNZ beta glc) contained in the fruit of Prunus mume SIEB. et ZUCC. (Rosaceae), which is traditionally used as a medicinal food in Japan, was studied in rat intestines. BNZ beta glc was absorbed from the mucosal to serosal sides. Its metabolite, benzyl alcohol (BAL), was also detected on both the mucosal and serosal sides. In the presence of phloridzin (Na(+)/glucose cotransporter (SGLT1) inhibitor) or in the absence of Na+ (driving force), BNZ beta glc absorption was significantly decreased. Transport clearance of BNZ beta glc across the brush border membrane decreased as its concentration increased. These results indicate that BNZ beta glc is transported by SGLT1. Metabolic clearance of BNZ beta glc also decreased as its concentration increased. The amount ratio of BNZ beta glc to BAL on the serosal side increased with the increase of BNZ beta glc concentration. The intestinal availability of BNZ beta glc was lower in the absence of Na+ than in the presence of Na+, indicating that the SGLT1-mediated transport of BNZ beta glc increases intestinal availability by decreasing the intestinal extraction ratio. This neutraceutical study concluded that intestinal carrier-mediated transport across the brush border membrane improves the intestinal availability of nutritionally, pharmacologically or physiologically active compounds that undergo intestinal metabolism (first-pass effect).  相似文献   

2.
The intestinal absorption of benzyl β-glucoside (BNZβglc) contained in the fruit of Prunus mume SIEB. et ZUCC. (Rosaceae), which is traditionally used as a medicinal food in Japan, was studied in rat intestines. BNZβglc was absorbed from the mucosal to serosal sides. Its metabolite, benzyl alcohol (BAL), was also detected on both the mucosal and serosal sides. In the presence of phloridzin (Na+/glucose cotransporter (SGLT1) inhibitor) or in the absence of Na+ (driving force), BNZβglc absorption was significantly decreased. Transport clearance of BNZβglc across the brush border membrane decreased as its concentration increased. These results indicate that BNZβglc is transported by SGLT1. Metabolic clearance of BNZβglc also decreased as its concentration increased. The amount ratio of BNZβglc to BAL on the serosal side increased with the increase of BNZβglc concentration. The intestinal availability of BNZβglc was lower in the absence of Na+ than in the presence of Na+, indicating that the SGLT1-mediated transport of BNZβglc increases intestinal availability by decreasing the intestinal extraction ratio. This neutraceutical study concluded that intestinal carrier-mediated transport across the brush border membrane improves the intestinal availability of nutritionally, pharmacologically or physiologically active compounds that undergo intestinal metabolism (first-pass effect).  相似文献   

3.
4.
5.
6.
The second messengers involved in the signal transduction for Schistocerca gregaria, ion transport peptide (Schgr-ITP) that regulates ion and fluid transport across the ileum of the desert locust S. gregaria, were measured using competitive enzyme-linked immunosorbent assays (ELISAs). Synthetic Schgr-ITP elevates intracellular levels of both cyclic AMP and cyclic GMP, measured over a 15 min period in the presence of 3-isobutyl-1-methylxanthine, in a dose-dependent manner. Furthermore, crude corpora cardiaca (CC) extracts elevate intracellular cyclic AMP levels 2-fold greater than Schgr-ITP, suggesting that factors present in the CC, other than Schgr-ITP, also act via this second messenger. These results suggest that the interaction of Schgr-ITP with two separate receptors, most likely a G-protein coupled receptor and a membrane bound guanylate cyclase, elevates intracellular levels of cyclic AMP and cyclic GMP to regulate ion and fluid transport across the locust ileum. Cyclic AMP stimulates Cl, K+ and Na+ reabsorption, whereas secretion of H+ into the lumen of the ileum is most likely mediated via cyclic GMP. Cyclic GMP also stimulates Cl uptake in a similar manner to cyclic AMP. The measurement of tissue (central nervous system) levels of Schgr-ITP using an indirect ELISA confirms that the peptide is only present in the locust brain and the CC. The amounts present are greatest in the CC, where the peptide is presumably stored for release into the hemolymph when locusts feed.  相似文献   

7.
Cell culture models are useful for studying intestinal absorption and metabolism of carotenoids. The human intestinal cell line, Caco-2, has been the most widely used model for these studies. The PF11 and TC7 clones of Caco-2 exhibit beta-carotene-15,15'-oxygenase activity, a key enzyme in the conversion of carotenoids to vitamin A. Studies on the recent cloning of this enzyme are discussed. An in vitro cell culture system used to study intestinal absorption of carotenoids is presented. Under conditions mimicking the postprandial state, Caco-2 cells on membranes take up carotenoids and secrete them incorporated into chylomicrons. Both the cellular uptake and secretion of beta-carotene are saturable, concentration-dependent processes. The selective absorption of all-trans beta-carotene versus its cis isomers, the differential absorption of individual carotenoids, and the specific interactions between carotenoids during their absorption are discussed. The participation of a specific epithelial transporter in the intestinal absorption of carotenoids is proposed.  相似文献   

8.
The nature of protein breakdown products and peptidomimetic drugs such as beta-lactams is crucial for their transmembrane transport across apical enterocyte membranes, which is accomplished by the pH-dependent high-capacity oligopeptide transporter PEPT1. To visualize oligopeptide transporter-mediated uptake of oligopeptides, an ex vivo assay using the fluorophore-conjugated dipeptide derivative D-Ala-Lys-N(epsilon)-7-amino-4-methylcoumarin-3-acetic acid (D-Ala-Lys-AMCA) was established in the murine small intestine and compared with immunohistochemistry for PEPT1 in murine and human small intestine. D-Ala-Lys-AMCA was accumulated by enterocytes throughout all segments of the murine small intestine, with decreasing intensity from the top to the base of the villi. Goblet cells did not show specific uptake. Inhibition studies revealed competitive inhibition by the beta-lactam cefadroxil, the angiotensin-converting enzyme inhibitor captopril, and the dipeptide glycyl-glutamine. Controls were performed using either the inhibitor diethylpyrocarbonate or an incubation temperature of 4 degrees C to exclude unspecific uptake. Immunohistochemistry for PEPT1 localized immunoreactivity to the enterocytes, with the highest intensity at the apical membrane. This is the first study that visualizes dipeptide transport across the mammalian intestine and indicates that uptake assays using D-Ala-Lys-AMCA might be useful for characterizing PEPT1-specific substrates or inhibitors.  相似文献   

9.
Intestinal metabolism and poor permeability were known to be major barriers for oral absorption of large peptide drugs. Dimensionless wall permeability values of C-terminal octa- and tetra-peptides cholecystokinin analogs (CCK8 and CCK4) were estimated and found out to be greater than 1, suggesting no permeability-limited absorption for CCK analogs. Thus, a strategy employing enzyme inhibitors and a specific delivery site to improve the absorption was developed and tested with CCK8, followed by identification of metabolites of the analogs and their participating enzymes in rabbit brush-border membrane vesicles. Thiorphan and amastatin, a specific enzyme inhibitor for enkephalinase and aminopeptidase, respectively, in pH 4 buffer solution were coadministered with CCK8 to the ileum in fistulated rats. The absolute bioavailability (F) of CCK8 was 5.4% and increased to 19% in the presence of the enzyme inhibitors, while the F values following oral administration were close to zero. These results indicate that peptide oral delivery is possible.  相似文献   

10.
Chlorpheniramine (CPAM) is a chiral antihistaminic drug commercialized as a racemic mixture. The intestinal absorption and metabolism of CPAM have been investigated in rat using in vivo (oral and IV administration), in situ (intestinal loop model), and in vitro (everted sac model) experiments. Oral and IV administrations of 20 mg/kg of the racemic mixture show that the pharmacokinetics of CPAM are stereoselective, with higher AUCs for the (+)-S-enantiomer compared to its antipode. The monodesmethyl metabolite (DCPM) was quantifiable in blood and its pharmacokinetics are stereoselective after oral but not after IV administration. Experiments using intestinal loops and everted sacs showed that the absorption is not stereoselective and that in vivo stereoselective formation of DCPM is presumably due to stereoselective hepatic metabolism. Moreover, the in vitro and in situ absorption of CPAM are not modified by modulators of P-glycoprotein and cytochromes P450 (cyclosporin A, ketoconazole).  相似文献   

11.
Current research on lipid metabolism in ruminants aims to improve the growth and health of the animals and the muscle characteristics associated with meat quality. This review, therefore, focuses on fatty acid (FA) metabolism from absorption to partitioning between tissues and metabolic pathways. In young calves, which were given high-fat milk diets, lipid absorption is delayed because the coagulation of milk caseins results in the retention of dietary fat as an insoluble clot in the abomasum. After weaning, the calves were fed forage- and cereal-based diets containing low levels of long-chain fatty acids (LCFA) but leading to high levels of volatile fatty acid (VFA) production by the rumen microflora. Such differences in dietary FA affect: i) the lipid transport system via the production of lipoproteins by the intestine and the liver, and (ii) the subsequent metabolism of lipids and FA by tissues. In preruminant calves, high-fat feed stimulates the secretion of triacylglycerols (TG)-rich lipoproteins (chylomicrons, very-low density lipoproteins (VLDL)). Diets rich in polyunsaturated FA (PUFA) stimulate the production of chylomicrons by the intestine (at peak lipid absorption) and of high density lipoproteins by the liver, leading to high blood concentrations of cholesterol. High levels of non-esterified FA (NEFA) uptake by the liver in high-yielding dairy cows in early lactation leads to TG infiltration of the hepatocytes (fatty liver). This is due to the low chronic capacity of the liver to synthesise and secrete VLDL particles. This abnormality in hepatic FA metabolism involves defects in apolipoprotein B synthesis and low availability of apolipoproteins and lipids for VLDL packaging. Fatty liver in calves is also caused by milk containing either soybean oil (rich in n-6 PUFA), or coconut oil (rich in C12:0 and C14:0). The ability of muscle tissue to use FA as an energy source depends on its mitochondrial content and, hence, on many physiological factors. The uptake and partitioning of LCFA between oxidation and storage in muscle is regulated by the activity of key intracellular enzymes and binding proteins. One such protein, carnitine palmitoyltransferase I (CPT I) controls the transport of LCFA into mitochondria. Metabolites derived from LCFA inhibit glucose oxidation, decrease the activity of CPT I and decrease the efficiency of ATP production by mitochondria. Most research on tissue lipid metabolism in ruminants is focused on: i) the partitioning of FA oxidation between intracellular peroxisomes and mitochondria in the liver and in muscles; (ii) the regulation of lipid metabolism by leptin, a recently discovered hormone secreted by mature adipocytes; and iii) the effects of activation of the nuclear receptors (PPARs and RXR) by LCFA or by phytol metabolites derived from chlorophyll.  相似文献   

12.
Teng Z  Yuan C  Zhang F  Huan M  Cao W  Li K  Yang J  Cao D  Zhou S  Mei Q 《PloS one》2012,7(1):e29647

Background

Polyphenols, a group of complex naturally occurring compounds, are widely distributed throughout the plant kingdom and are therefore readily consumed by humans. The relationship between their chemical structure and intestinal absorption, transport, and first-pass metabolism remains unresolved, however.

Methods

Here, we investigated the intestinal absorption and first-pass metabolism of four polyphenol compounds, apigenin, resveratrol, emodin and chrysophanol, using the in vitro Caco-2 cell monolayer model system and in situ intestinal perfusion and in vivo pharmacokinetic studies in rats, so as to better understand the relationship between the chemical structure and biological fate of the dietary polyphenols.

Conclusion

After oral administration, emodin and chrysophanol exhibited different absorptive and metabolic behaviours compared to apigenin and resveratrol. The differences in their chemical structures presumably resulted in differing affinities for drug-metabolizing enzymes, such as glucuronidase and sulphatase, and transporters, such as MRP2, SGLT1, and P-glycoprotein, which are found in intestinal epithelial cells.  相似文献   

13.
Quercetin is a typical flavonoid ubiquitously present in fruits and vegetables, and its antioxidant effect is implied to be helpful for human health. The bioavailability of quercetin glycosides should be clarified, because dietary quercetin is mostly present as its glycoside form. Although quercetin glycosides are subject to deglycosidation by enterobacteria for the absorption at large intestine, small intestine acts as an effective absorption site for glucose-bound glycosides (quercertin glucosides). This is because small intestinal cells possess a glucoside-hydrolyzing activity and their glucose transport system is capable of participating in the glucoside absorption. A study using a cultured cell model for intestinal absorption explains that the hydrolysis of the glucosides accelerates their absorption in the small intestine. Small intestine is also recognized as the site for metabolic conversion of quercetin and other flavonoids as it possesses enzymatic activity of glucuronidation and sulfation. Modulation of the intestinal absorption and metabolism may be beneficial for regulating the biological effects of dietary quercetin.  相似文献   

14.
Labelled oleic acid was introduced into the duodenum of chicks in which the pancreatic-duodenal vein and brachial artery had been cannulated, and blood samples were withdrawn. Similar experiments were performed in rats which had not been venously cannulated. In rat plasma, over 92% of the label was found in the triglycerides, whereas in the chick 64% of the label was in the triglycerides and 27-31% in the free fatty acids. In the rat, over 85% of the lipid label circulating in the plasma was found in lipoproteins with hydrated density less than 1.006, whereas in the chick only 25% of the label was in this fraction and the majority of label was found with density greater than 1.063. It thus appears that both release and transport of fatty acids from the intestinal mucosa in chicks differs from the rat.  相似文献   

15.
16.
17.
18.
A substantial increase in intestinal lymph flow and protein content follows fat ingestion. The effect of intraduodenal feeding of fats was studied in the rat to define the mechanisms responsible. The change appears to be largely independent of the route of fat absorption, that is, whether by the portal venous route or, alternatively, by the lymphatic route. It must be presumed that it is related to events unconnected with the route taken by absorbed fat leaving the intestinal cell.  相似文献   

19.
Recent evidence has suggested that transport of nutrients from the lumen to the interior of the gastrointestinal epithelium and exit of nutrients from the enterocyte to the circulation is governed by physicochemical properties of brush border and basolateral membranes, respectively. The main determinants of membrane properties are phospholipid, cholesterol, and fatty acyl chain composition (chain length and degree of unsaturation). Lipid synthesis occurs in enterocyte microsomes and the fine tuning of lipid composition is done at other subcellular sites by deacylation-reacylation or by changing the polar head group (e.g., by phosphatidylethanolamine methyltransferase). The present paper will focus on the mechanisms by which enterocyte membranes adapt functional properties in response to external stimuli. It is proposed that under the influence of internal or external stress, the enzymes of lipid metabolism in microsomes are modulated. These changes in lipid synthesis are reflected in other subcellular membranes, changing their physicochemical status and thus transport phenomena. One of the initial events appears to be alteration in desaturase enzyme activity. Our results suggest that desaturase activity and the fatty acyl profiles of the intestinal mucosal phospholipid rapidly respond to physiological conditions such as fasting and dietary fat treatment.  相似文献   

20.
Intestinal cholesterol absorption is modulated by transport proteins in enterocytes. Cholesterol uptake from intestinal lumen requires several proteins on apical brush-border membranes, including Niemann-Pick C1-like 1 (NPC1L1), scavenger receptor B-I, and CD36, whereas two ATP-binding cassette half transporters, ABCG5 and ABCG8, on apical membranes work together for cholesterol efflux back to the intestinal lumen to limit cholesterol absorption. NPC1L1 is essential for cholesterol absorption, but its function as a cell surface transporter or an intracellular cholesterol transport protein needs clarification. Another ATP transporter, ABCA1, is present in the basolateral membrane to mediate HDL secretion from enterocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号