首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a mosaic pattern of variation between the two tandemly arranged human α1-acid glycoprotein genes. Both the synonymous and the nonsynonymous sites of exons 3 and 4 are more divergent than the rest of the gene, suggesting that they have had a different evolutionary history. Comparisons of the two gene sequences with rat AGP indicate that exons 3 and 4 of AGP2 have been evolving without functional constraint since their divergence from AGP1. It is proposed that the conserved region of the gene has been homogenized recently by gene conversion with the homologous regions of AGP1. The Alu sequences surrounding the genes appear to have been involved in both the gene duplication and the gene conversion events.  相似文献   

2.
To study the evolution of human X-linked red and green opsin genes, genomic sequences in large regions of the two genes were compared. The divergences in introns 3, 4, and 5 and the 3′ flanking sequence of the two genes are significantly lower than those in exons 4 and 5. The homogenization mechanism of introns and the 3′ flanking sequence of human red and green opsin genes is probably gene conversion, which also occurred in exons 1 and 6. At least one gene conversion event occurred in each of three regions (1, 3, and 5) in the sequences compared. In conclusion, gene conversion has occurred frequently between human red and green opsin genes, but exons 2, 3, 4, and 5 have been maintained distinct between the two genes by natural selection. Received: 29 September 1997 / Accepted: 29 September 1997  相似文献   

3.
During higher primate evolution, gene conversion seems to have occurred often between the red and green photo-pigment genes, which are tandemly linked on the X chromosome. To understand this phenomenon better, intron 4 sequences of the red and green pigment genes of a male human (an Asian Indian), a male chimpanzee, and a male baboon were amplified by PCR and sequenced. The data show that the intron 4 sequences between the two genes have been strongly or completely homogenized in the three species studied. Apparently recent gene conversion events have occurred in introns 4 of the red and green pigment genes in humans and chimpanzees. Two or more conversion events may have occurred at different times in introns 4 of the two pigment genes in baboons. The divergence between the two genes is significantly lower in intron 4 than in exons 4 and 5 in each species, contrary to the usual situation that introns evolve faster than exons. It is most likely that strong natural selection for maintaining the distinct functions of exons 4 and 5 of the red and green pigment genes has acted against sequence homogenization of these exons.   相似文献   

4.
5.
6.
The human orosomucoid (ORM) is controlled by two closely linked loci, ORM1 and ORM2, and two tandem genes, AGP1 and AGP2, encoding the proteins produced by the two loci, have been cloned. In this study the molecular basis of ORM1 polymorphism was investigated. For the detection of mutations the products of the six exons of each gene, amplified by the polymerase chain reaction (PCR), were screened by single-strand conformation polymorphism analysis. Subsequently, the exons with an altered migration pattern were gene-specifically amplified by nested PCR. Sequencing of the gene-specific PCR products showed that the three common ORM1 alleles result from A→G transitions at the codons for amino acid positions 20 in exon 1 and 156 in exon 5 of the AGP1 gene: ORM1*F1 was characterized by CAG (Gln) and GTG (Val), ORM1*F2, by CAG (Gln) and ATG (Met), and ORM1*S, by CGG (Arg) and GTG (Val). The phylogenesis of the genes encoding these three ORM1 alleles is discussed. Received: 5 September 1996  相似文献   

7.
Human red and green visual pigment genes are X-linked duplicate genes. To study their evolutionary history, introns 2 and 4 (1,987 and 1,552 bp, respectively) of human red and green pigment genes were sequenced. Surprisingly, we found that intron 4 sequences of these two genes are identical and that the intron 2 sequences differ by only 0.3%. The low divergences are unexpected because the duplication event producing the two genes is believed to have occurred before the separation of the human and Old World monkey (OWM) lineages. Indeed, the divergences in the two introns are significantly lower than both the synonymous divergence (3.2% +/- 1.1%) and the nonsynonymous divergence (2.0% +/- 0.5%) in the coding sequences (exons 1-6). A comparison of partial sequences of exons 4 and 5 of human and OWM red and green pigment genes supports the hypothesis that the gene duplication occurred before the human-OWM split. In conclusion, the high similarities in the two intron sequences might be due to very recent gene conversion, probably during evolution of the human lineage.   相似文献   

8.
9.
Diversity and diversification of HLA-A,B,C alleles   总被引:20,自引:0,他引:20  
The nucleotide sequences encoding 14 HLA-A,B,C and 5 ChLA-A,B,C molecules have been determined. Combining these sequences with published data has enabled the polymorphism in 40 HLA-A,B,C and 9 ChLA-A,B,C alleles to be analyzed. Diversity is generated through assortment of point mutations by recombinational mechanisms including gene and allelic conversions. The distribution and frequency of silent and replacement substitutions indicate that there has been positive selection for allelic diversity in the 5' part of the gene (exons 1 to 3) and for allelic homogenization and locus specificity in the 3' part of the gene (exons 4 to 8). These differences may correlate with the lengths of converted sequences in the two parts of the gene and frequency of the CpG dinucleotide. Locus-specific divergence of HLA-A,B, and C demonstrates that recombinational events involving alleles of a locus have been more important than conversion between loci. This contrasts with the predominance of gene conversion events in the evolution of mutants of the H-2Kb gene. However, a striking example of gene conversion involving HLA-B and C alleles of an oriental haplotype has been found. Comparison of human and chimpanzee alleles reveals extensive sharing of polymorphisms, confirming that diversification is a slow process, and that much of contemporary polymorphism originated in ancestral primate species before the emergence of Homo sapiens. There is less polymorphism at the HLA-A locus compared to HLA-B, with greater similarity also being seen between HLA-A and ChLA-A alleles than between HLA-B and ChLA-B alleles. Although greater diversity is seen in the 5' "variable" exons of HLA-B compared to HLA-A, there is increased heterogeneity in the 3' "conserved" exons of HLA-A compared to HLA-B.  相似文献   

10.
Kim JY  Mahé A  Guy S  Brangeon J  Roche O  Chourey PS  Prioul JL 《Gene》2000,245(1):89-102
Two maize putative cell-wall invertase genes (Incw3 and Incw4) have been isolated by screening a genomic DNA library (Zea mays L. W22) using the cDNA probes encoding the two maize cell-wall invertases Incw1 and Incw2. The Incw3 and Incw4 genes contain six exons/five introns and five exons/four introns, respectively. The protein sequences deduced from both genes revealed a beta-fructosidase motif and a cysteine catalytic site known to be conserved in invertase genes. A detailed analysis of the protein and nucleotide sequences provides evidence that the Incw3 and the Incw4 genes encode putative cell-wall invertases. Furthermore, the isoelectric point deduced from the INCW4 protein sequence suggested that the Incw4 gene may encode a unique type of cell-wall invertase unbound in the apoplast. Gene expression studies using RT-PCR and in-situ RT-PCR hybridization showed that the Incw3 expression is organ/tissue-specific and developmentally regulated. In contrast, the Incw4 gene is constitutively expressed in all vegetative and reproductive tissues tested.  相似文献   

11.
Oota H  Dunn CW  Speed WC  Pakstis AJ  Palmatier MA  Kidd JR  Kidd KK 《Gene》2007,392(1-2):64-76
Humans have seven alcohol dehydrogenase genes (ADH) falling into five classes. Three out of the seven genes (ADH1A, ADH1B and ADH1C) belonging to Class I are expressed primarily in liver and code the main enzymes catalyzing ethanol oxidization. The three genes are tandemly arrayed within the ADH cluster on chromosome 4 and have very high nucleotide similarity to each other (exons: >90%; introns: >70%), suggesting the genes have been generated by duplication event(s). One explanation for maintaining similarity of such clustered genes is homogenization via gene conversion(s). Alternatively, recency of the duplications or some other functional constraints might explain the high similarities among the genes. To test for gene conversion, we sequenced introns 2, 3, and 8 of all three Class I genes (total>15.0 kb) for five non-human primates--four great apes and one Old World Monkey (OWM)--and compared them with those of humans. The phylogenetic analysis shows each intron sequence clusters strongly within each gene, giving no evidence for gene conversion(s). Several lines of evidence indicate that the first split was between ADH1C and the gene that gave rise to ADH1A and ADH1B. We also analyzed cDNA sequences of the three genes that have been previously reported in mouse and Catarrhines (OWMs, chimpanzee, and humans) and found that the synonymous and non-synonymous substitution (dN/dS) ratios in all pairs are less than 1 representing purifying selection. This suggests that purifying selection is more important than gene conversion(s) in maintaining the overall sequence similarity among the Class I genes. We speculate that the highly conserved sequences on the three duplicated genes in primates have been achieved essentially by maintaining stability of the hetero-dimer formation that might have been related to dietary adaptation in primate evolution.  相似文献   

12.
We demonstrated that nucleotide and amino acid sequences in the carboxyl-terminal regions of rat, mouse, and human prepropancreatic polypeptide exhibit a high degree of divergence, whereas the amino-terminal domains are highly conserved. To understand the molecular basis of this divergence and conservation, we determined the nucleotide sequence of the rat pancreatic polypeptide gene from an islet genomic library and compared it with that of the human gene. Exon 2 of the rat gene encodes the signal peptide and pancreatic polypeptide, exon 3 encodes the carboxyl-terminal region, and exons 1 and 4 encode the 5'- and 3'- untranslated regions of the mRNA, respectively. Exons 1 and 2 of rat and human genes are well conserved. The rat and human genes, however, have exons 3 and 4 of different lengths and heterologous nucleotide sequences. Mutational accumulation in exons 3 and 4 and intron 3 of the rat gene appears to have caused splice junction sliding and translational frameshift, resulting in a structural divergence in the carboxyl-terminal region. Available evidence indicates that the mosaicism of structural conservation and divergence in pancreatic polypeptide genes may have been caused by a difference in the evolutionary rates of the genomic regions.  相似文献   

13.
Two members of the human salivary proline-rich protein (PRP) multigene family have been isolated and completely sequenced. These PRP genes, PRH1 and PRH2, are of the HaeIII-type subfamily and code for acidic PRP proteins. Both genes are approximately 3.5 kilobase pairs (kb) in length and contain four exons. Exon 3 encodes the proline-rich part of the protein and includes five 63-base pair (bp) repeats. CAT and ATA boxes and several possible enhancer sequences occur in a 1-kb region 5' to exon 1. Two sets of repeats occur in the sequenced region in addition to the 63-bp repeats: one pair of about 140 bp flanks 500 bp of DNA in the first intervening sequence, and the other pair of 72 bp is tandemly repeated 1.4 kb 5' to the PRH1 gene. The 4-kb region of sequenced DNA from PRH1 differs by an average of 8.7% from the same region in PRH2, but the nucleotide sequences of the exon 3 of the two genes differ by only 0.2%. This result suggests the occurrence of a recent gene conversion event. The regions containing the 5-fold repeated sequences of 63 bp are identical in the two genes, PRH1 and PRH2. A comparison of the human HaeIII and BstNI subfamily repeats and a comparison of the human, mouse, and rat repeats suggest that the individual repeats have evolved in a concerted fashion within each gene and within the PRP gene family as a whole.  相似文献   

14.
15.
16.
The nucleotide sequence of a segment of the chick alpha 1 type III collagen gene which codes for the C-propeptide was determined and compared with the corresponding sequence in the alpha 1 type I and alpha 2 type I collagen genes. As in the alpha 2 type I gene the coding information for the C-propeptide of the type III collagen gene is subdivided in four exons. Similarly, the amino proximal exon contains sequences for both the carboxy terminal end of the alpha-helical segment of collagen and for the beginning of the C-propeptide in both genes. Therefore, this organization of exons must have been established before these two collagen genes arose by duplication of a common ancestor. In several subsegments the deduced amino acid sequence for the C-propeptide of type III collagen shows a strong homology with the corresponding amino acid sequence in alpha 1 and alpha 2 type I. For one of these homologous amino acid sequences, however, the nucleotide sequence is much better conserved than for the others. It is possible that a mechanism of gene conversion has maintained the homogeneity of this nucleotide sequence among the interstitial collagen genes. Alternatively, the conserved nucleotide sequence may represent a regulatory signal which could function either in the DNA or in the RNA.  相似文献   

17.
18.
The complete nucleotide sequence of an active class I HLA gene, HLA-A3, has been determined. This sequence, together with that obtained for the HLA-CW3 gene, represents the first complete nucleotide sequence to be determined for functional class I HLA genes. The gene organisation of HLA-A3 closely resembles that of class I H-2 genes in mouse: it shows a signal exon, three exons encoding the three extracellular domains, one exon encoding the transmembrane region and three exons encoding the cytoplasmic domain. The complete nucleotide sequences of the active HLA genes, HLA-A3 and HLA-CW3, now permit a meaningful comparison of the nucleotide sequences of class I HLA genes by alignment with the sequence established for a HLA-B7-specific cDNA clone and the sequences of two HLA class I pseudogenes HLA 12.4 and LN- 11A . The comparisons show that there is a non-random pattern of nucleotide differences in both exonic and intronic regions featuring segmental homologies over short regions, which is indicative of a gene conversion mechanism. In addition, analysis of the frequency of nucleotide substitution at the three base positions within the codons of the functional genes HLA-A3, HLA-B7 and HLA-CW3 shows that the pattern of nucleotide substitution in the exon coding for the 3rd extracellular domain is consistent with strong selection pressure to conserve the sequence. The distribution of nucleotide variation in the other exons specifying the mature protein is nearly random with respect to the frequencies of substitution at the three nucleotide positions of their codons. The evolutionary implications of these findings are discussed.  相似文献   

19.
20.
Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase   总被引:1,自引:0,他引:1  
Plant ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme composed of two large and two small subunits. Here, we report the structures of the maize (Zea mays) genes encoding AGP small subunits of leaf and endosperm. Excluding exon 1, protein-encoding sequences of the two genes are nearly identical. Exon 1 coding sequences, however, possess no similarity. Introns are placed in identical positions and exhibit obvious sequence similarity. Size differences are primarily due to insertions and duplications, hallmarks of transposable element visitation. Comparison of the maize genes with other plant AGP small subunit genes leads to a number of noteworthy inferences concerning the evolution of these genes. The small subunit gene can be divided into two modules. One module, encompassing all coding information except that derived from exon 1, displays striking similarity among all genes. It is surprising that members from eudicots form one group, whereas those from cereals form a second group. This implies that the duplications giving rise to family members occurred at least twice and after the separation of eudicots and monocot cereals. One intron within this module may have had a transposon origin. A different evolutionary history is suggested for exon 1. These sequences define three distinct groups, two of which come from cereal seeds. This distinction likely has functional significance because cereal endosperm AGPs are cytosolic, whereas all other forms appear to be plastid localized. Finally, whereas barley (Hordeum vulgare) reportedly employs only one gene to encode the small subunit of the seed and leaf, maize utilizes the two genes described here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号