首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The culture medium for Rhodothermus marinus was optimised on a shake-flask scale by using statistical factorial designs for enhanced production of a highly thermostable alpha-L-arabinofuranosidase (AFase). The medium containing 3.6 g/l birch wood xylan and 8.2 g/l yeast extract yielded a maximum of 110 nkat/ml AFase activity together with 125 nkat/ml xylanase and 65 nkat/ml beta-xylosidase activity. In addition, low levels of beta-mannanase (30 nkat/ml), alpha-galactosidase (0.2 nkat/ml), beta-galactosidase (0.3 nkat/ml), endoglucanase (5 nkat/ml) and beta-glucosidase (30 nkat/ml) were detected in the culture filtrate. Among the various carbon sources tested, birchwood xylan was most effective for the formation of AFase and xylanase activities, followed by oat spelt and beechwood xylans, and xylan-rich lignocelluoses (e.g., starch-free sugar beet pulp and wheat bran). Constitutive levels of enzyme activities were detected when the bacterium was grown on other polysaccharides and low-molecular-weight carbohydrates. A fermentation in a 5-l fermenter (3-l working volume) using the optimised medium yielded 60 nkat/ml AFase associated with 65 nkat/ml xylanase and 35 nkat/ml beta-xylosidase activities. The crude AFase displayed optimal activity between pH 5.5 and 7 and at 85 degrees C. It had half-lives of 8.3 h at 85 degrees C and 17 min at 90 degrees C. It showed high stability between pH 5 and 9 (24 h at 65 degrees C). The combined use of AFase-rich xylanase and mannanase from R. marinus in the prebleaching of softwood kraft pulp gave a brightness increase of 1.8% ISO. To our knowledge, this is the first report on the production of a high AFase activity by an extreme thermophilic bacterium and this enzyme is the most thermostable AFase reported so far.  相似文献   

2.
A family 18 chitinase gene chiA from the thermophile Rhodothermus marinus was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 1,131 nucleotides encoding a protein of 377 amino acids with a calculated molecular weight of 42,341 Da. The deduced ChiA was a non-modular enzyme with one unique glycoside hydrolase family 18 catalytic domain. The catalytic domain exhibited 43% amino acid identity with Bacillus circulans chitinase C. Due to poor expression of ChiA, a signal peptide-lacking mutant, chiAsp, was designed and used subsequently. The optimal temperature and pH for chitinase activity of both ChiA and ChiAsp were 70°C and 4.5–5, respectively. The enzyme maintained 100% activity after 16 h incubation at 70°C, with half-lives of 3 h at 90°C and 45 min at 95°C. Results of activity measurements with chromogenic substrates, thin-layer chromatography, and viscosity measurements demonstrated that the chitinase is an endoacting enzyme releasing chitobiose as a major end product, although it acted as an exochitobiohydrolase with chitin oligomers shorter than five residues. The enzyme was fully inhibited by 5 mM HgCl2, but excess ethylenediamine tetraacetic acid relieved completely the inhibition. The enzyme hydrolyzed 73% deacetylated chitosan, offering an attractive alternative for enzymatic production of chitooligosaccharides at high temperature and low pH. Our results show that the R. marinus chitinase is the most thermostable family 18 chitinase isolated from Bacteria so far.  相似文献   

3.
Two separate citrate synthases from the extremely thermophilic bacterium Rhodothermus marinus have been identified and purified. One of the enzymes is a hexameric protein and is the first thermostable, hexameric citrate synthase to be isolated. The other is a dimeric enzyme, which is also thermostable but possesses both citrate synthase and 2-methyl citrate synthase activities. 2-Methyl citrate synthase uses propionyl-coenzyme A as one of its substrates and in Escherichia coli, for example, it has been implicated in the metabolism of propionate. However, no growth of R. marinus was observed using minimal medium with propionate as the sole carbon source, and both hexameric and dimeric enzymes were produced irrespective of whether propionate was included in the growth medium. The data are discussed with respect to the evolutionary relationships between the known hexameric and dimeric citrate synthases and 2-methyl citrate synthase.  相似文献   

4.
A superoxide dismutase (SOD) gene was cloned from the thermophilic bacterium Rhodothermus sp. XMH10 for the first time and highly expressed in Escherichia coli. The Rhodothermus sp. XMH10 SOD (RhSOD) gene encodes 209 amino acids with a putative molecular weight of 23.6 kDa and a pI value of 5.53. The recombinant RhSOD was detected to be an iron type SOD and existed as a dimer on its natural status. Experiments revealed that this RhSOD showed high activity at 50–70 °C and pH 5.0. Compared to SODs from other thermophiles, it was highly thermostable, maintaining more than 90% of its activity after incubation at 70 °C for 12 h, only totally inactivated after more than 4-h incubation at 80 °C. It also showed much higher resistance to KCN, NaN3 and H2O2 as compared to other SODs. Xin Wang and Haijie Yang contribute to this work equally.  相似文献   

5.
The biosynthetic reaction scheme for the compatible solute mannosylglycerate in Rhodothermus marinus is proposed based on measurements of the relevant enzymatic activities in cell-free extracts and in vivo (13)C labeling experiments. The synthesis of mannosylglycerate proceeded via two alternative pathways; in one of them, GDP mannose was condensed with D-glycerate to produce mannosylglycerate in a single reaction catalyzed by mannosylglycerate synthase, in the other pathway, a mannosyl-3-phosphoglycerate synthase catalyzed the conversion of GDP mannose and D-3-phosphoglycerate into a phosphorylated intermediate, which was subsequently converted to mannosylglycerate by the action of a phosphatase. The enzyme activities committed to the synthesis of mannosylglycerate were not influenced by the NaCl concentration in the growth medium. However, the combined mannosyl-3-phosphoglycerate synthase/phosphatase system required the addition of NaCl or KCl to the assay mixture for optimal activity. The mannosylglycerate synthase enzyme was purified and characterized. Based on partial sequence information, the corresponding mgs gene was identified from a genomic library of R. marinus. In addition, the mgs gene was overexpressed in Escherichia coli with a high yield. The enzyme had a molecular mass of 46,125 Da, and was specific for GDP mannose and D-glycerate. This is the first report of the characterization of a mannosylglycerate synthase.  相似文献   

6.
7.
Cellobiose 2-epimerase (CE) reversibly converts glucose residue to mannose residue at the reducing end of β-1,4-linked oligosaccharides. It efficiently produces epilactose carrying prebiotic properties from lactose, but the utilization of known CEs is limited due to thermolability. We focused on thermoholophilic Rhodothermus marinus JCM9785 as a CE producer, since a CE-like gene was found in the genome of R. marinus DSM4252. CE activity was detected in the cell extract of R. marinus JCM9785. The deduced amino acid sequence of the CE gene from R. marinus JCM9785 (RmCE) was 94.2% identical to that from R. marinus DSM4252. The N-terminal amino acid sequence and tryptic peptide masses of the native enzyme matched those of RmCE. The recombinant RmCE was most active at 80 °C at pH 6.3, and stable in a range of pH 3.2-10.8 and below 80 °C. In contrast to other CEs, RmCE demonstrated higher preference for lactose over cellobiose.  相似文献   

8.
Thermotoga maritima, among the most thermophilic eubacteria currently known, produces glucose isomerase when grow in the presence of xylose. The purified enzyme is a homotetramer with submit molecular Wight of about 45,000. It has a number of features in common with previously described glucose isomerases-pH optimum of 6.5 to 7.5, presence of activesite histidine, requirement for metal cations such as Co(2+) and Mg(2+), and preference for xylose as substrate. In addition, it has significant sequence/structural homology with other glucose isomerases, as shown by both N-terminal sequencing and immunological crossreactivity. The T. maritima enzyme is distinguished by its extreme thermostability-a temperature optimum of 105 to 110 degrees C, and an estimated half-life of 10 minutes at 120 degrees C, pH 7.0. The high degree of thermostability, coupled with a neutral to slightly acid pH optimum, reveal this enzyme to be a promising candidate for improvement of the industrial glucose isomerization process (c) 1993 Wiley & Sons, Inc.  相似文献   

9.
10.
The xyn1 encoded 5 domain xylanase from the thermophilic bacterium Rhodothermus marinus binds specifically to xylan, β-glucan and amorphous but not crystalline cellulose. Our results show that the binding is mediated by the full length xylanase, but not by the catalytic domain only. Based on similarities concerning both predicted secondary structure and binding specificity found with one cellulose binding domain of CenC from Cellulomonas fimi, we suggest that the binding is mediated by the two N-terminally repeated domains.  相似文献   

11.
Trehalose uptake at 65°C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 ± 11 μM and Vmax = 21.2 ± 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 ± 0.03 μM and Vmax = 0.39 ± 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 ± 3 μM and Vmax = 48 ± 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 μM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.  相似文献   

12.
A thermostable glycoside hydrolase family-10 xylanase originating from Rhodothermus marinus was cloned and expressed in the methylotrophic yeast Pichia pastoris (SMD1168H). The DNA sequence from Rmxyn10A encoding the xylanase catalytic module was PCR-amplified and cloned in frame with the Saccharomyces cerevisiae alpha-factor secretion signal under the control of the alcohol oxidase (AOX1) promotor. Optimisation of enzyme production in batch fermentors, with methanol as a sole carbon source, enabled secretion yields up to 3gl(-1) xylanase with a maximum activity of 3130Ul(-1) to be achieved. N-terminal sequence analysis of the heterologous xylanase indicated that the secretion signal was correctly processed in P. pastoris and the molecular weight of 37kDa was in agreement with the theoretically calculated molecular mass. Introduction of a heat-pretreatment step was however necessary in order to fold the heterologous xylanase to an active state, and at the conditions used this step yielded a 200-fold increase in xylanase activity. Thermostability of the produced xylanase was monitored by differential-scanning calorimetry, and the transition temperature (T(m)) was 78 degrees C. R. marinus xylanase is the first reported thermostable gram-negative bacterial xylanase efficiently secreted by P. pastoris.  相似文献   

13.
Rhodothermus marinus: physiology and molecular biology   总被引:2,自引:0,他引:2  
Rhodothermus marinus has been the subject of many studies in recent years. It is a thermohalophilic bacterium and is the only validly described species in the genus Rhodothermus. It is not closely related to other well-known thermophiles and is the only thermophile within the family Crenotrichaceae. R. marinus has been isolated from several similar but distantly located geothermal habitats, many of which are subject to large fluctuations in environmental conditions. This presumably affects the physiology of R. marinus. Many of its enzymes show optimum activity at temperatures considerably higher than 65°C, the optimum for growth, and some are active over a broad temperature range. Studies have found distinguishing components in the R. marinus electron transport chain as well as in its pool of intracellular solutes, which accumulate during osmotic stress. The species hosts both bacteriophages and plasmids and a functional intein has been isolated from its chromosome. Despite these interesting features and its unknown genetics, interest in R. marinus has been mostly stimulated by its thermostable enzymes, particularly polysaccharide hydrolysing enzymes and enzymes of DNA synthesis which may be useful in industry and in the laboratory. R. marinus has not been amenable to genetic analysis until recently when a system for gene transfer was established. Here, we review the current literature on R. marinus.  相似文献   

14.
A carboxypeptidase was purified to electrophoretic homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Molecular masses assessed by SDS/PAGE and gel filtration were 42 kDa and 170 kDa, respectively, which points to a tetrameric structure for the molecule. An isoelectric point of 5.9 was also determined. The enzyme was proven to be a metalloprotease, as shown by the inhibitory effects exerted by EDTA and o-phenanthroline; furthermore, dialysis against EDTA led to a complete loss of activity, which could be restored by addition of Zn2+ in the micromolar range, and, to a lesser extent, by Co2+. The enzyme was endowed with a broad substrate specificity, as shown by its ability to release basic, acidic and aromatic amino acids from the respective benzoylglycylated and benzyloxycarbonylated amino acids. An esterase activity of the carboxypeptidase was also demonstrated on different esterified amino acids and dipeptides blocked at the N-terminus. The enzyme displayed broad pH optima ranging over 5.5-7.0, or 5.5-9.0, when using an acidic or a basic benzyloxycarbonylated amino acid, respectively. With regard to thermostability, it was proven to be completely stable on incubation for 15 min at 85 degrees C. Furthermore, thanks to its relatively low activation energy, i.e. 31.0 kJ/mol, it was still significantly active at room temperature. At 40 degrees C, the enzyme could withstand 0.1% SDS and different organic solvents: particularly ethanol up to 99%. Amino acid and N-terminal sequence analyses did not evidence any similarity to carboxypeptidases A nor thermolysin. A weak similarity was only found with bovine carboxypeptidase B.  相似文献   

15.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

16.
The rotenone sensitive NADH: menaquinone oxidoreductase (NDH-I or complex I) from the thermohalophilic bacterium Rhodothermus marinus has been purified and characterized. Three of its subunits react with antibodies against 78, 51, and 21.3c kDa subunits of Neurospora crassa complex I. The optimum conditions for NADH dehydrogenase activity are 50°C and pH 8.1, and the enzyme presents a K M of 9 M for NADH. The enzyme also displays NADH:quinone oxidoreductase activity with two menaquinone analogs, 1,4-naphtoquinone (NQ) and 2,3-dimethyl-1,4-naphtoquinone (DMN), being the last one rotenone sensitive, indicating the complex integrity as purified. When incorporated in liposomes, a stimulation of the NADH:DMN oxidoreductase activity is observed by dissipation of the membrane potential, upon addition of CCCP. The purified enzyme contains 13.5 ± 3.5 iron atoms and 3.7 menaquinone per FMN. At least five iron—sulfur centers are observed by EPR spectroscopy: two [2Fe–2S]2+/1+ and three [4Fe–4S]2+/1+ centers. By fluorescence spectroscopy a still unidentified chromophore was detected in R. marinus complex I.  相似文献   

17.
Rhodothermus marinus, a gram-negative heterotrophic marine thermophile, has been the subject of several recent studies. Isolation, sequencing, and analyses of a 16S rRNA gene have shown that R. marinus diverges sharply from major bacterial phyla and is most closely allied to the Flexibacter-Cytophaga-Bacteroides group. Further analyses revealed that the R. marinus chromosome contains a single rRNA operon with a 16S-23S intergenic region coding for tRNA(Ile) and tRNA(Ala).  相似文献   

18.
Full-length and truncated forms of a modular thermostable xylanase (EC 3.2.1.8., glycoside hydrolase family 10) were used in bleaching sequences of hardwood and softwood kraft pulps. Enzymatic treatment led to brightness gains of all pulps but the result depended on the pulp source. The presence of the additional domains in the full-length enzyme (including carbohydrate-binding modules) did not improve the bleaching process. No significant change in viscosity was seen after enzyme treatments indicating an unaffected pulp fibre length.  相似文献   

19.
The ligand-binding dynamics and the reaction with O(2) of the fully (five-electron) reduced cytochrome caa(3) from the thermohalophilic bacterium Rhodothermus (R.) marinus were investigated. The enzyme is a proton pump which has all the residues of the proton-transfer pathways found in the mitochondrial-like enzymes conserved, except for one of the key elements of the D-pathway, the helix-VI glutamate [Glu(I-286), R. sphaeroides numbering]. In contrast to what has been suggested previously as general characteristics of thermophilic enzymes, during formation of the R. marinus caa(3)-CO complex, CO binds weakly to Cu(B), and is rapidly (k(Ba) = 450 s(-1)) trapped by irreversible (K(Ba) = 4.5 x 10(3)) binding to heme a(3). Upon reaction of the fully reduced enzyme with O(2), four kinetic phases were resolved during the first 10 ms after initiation of the reaction. On the basis of a comparison to reactions observed with the bovine enzyme, these phases were attributed to the following transitions between intermediates (pH 7.8, 1 mM O(2)): R --> A (tau congruent with 8 micros), A --> P(r) (tau congruent with 35 micros), P(r) --> F (tau congruent with 240 micros), F --> O (tau congruent with 2.5 ms), where the last two phases were associated with proton uptake from the bulk solution. Oxidation of heme c was observed only during the last two reaction steps. The slower transition times as compared to those observed with the bovine enzyme most likely reflect the replacement of Glu(I-286) of the helix-VI motif -XGHPEV- by a tyrosine in the R. marinus enzyme in the motif -YSHPXV-. The presence of an additional, fifth electron in the enzyme was reflected by two additional kinetic phases with time constants of approximately 20 and approximately 720 ms during which the fifth electron reequilibrated within the enzyme.  相似文献   

20.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号