首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ectonucleoside pyrophosphatase phosphodiesterase 1 (NPP1/PC-1) is a member of the NPP enzyme family that is critical in regulating mineralization. In certain mineralizing sites of bone and cartilage, membrane-limited vesicles [matrix vesicles (MVs)] provide a sheltered internal environment for nucleation of calcium-containing crystals, including hydroxyapatite. MV formation occurs by budding of vesicles from the plasma membrane of mineralizing cells. The MVs are enriched in proteins that promote mineralization. Paradoxically, NPP1, the type II transmembrane protein that generates the potent hydroxyapatite crystal growth inhibitor inorganic pyrophosphate (PPi), is also enriched in MVs. Although osteoblasts express NPP1, NPP2, and NPP3, only NPP1 is enriched in MVs. Therefore, this study uses mineralizing human osteoblastic SaOS-2 cells, a panel of NPP1 mutants, and NPP1 chimeras with NPP3, which does not concentrate in MVs, to investigate how NPP1 preferentially targets to MVs. We demonstrated that a cytosolic dileucine motif (amino acids 49–50) was critical in localizing NPP1 to regions of the plasma membrane that budded off into MVs. Moreover, transposition of the NPP1 cytoplasmic dileucine motif and flanking region (AAASLLAP) to NPP3 conferred to NPP3 the ability to target to the plasma membrane and, subsequently, concentrate in MVs. Functionally, the cytosolic tail dileucine motif NPP1 mutants lost the ability to support MV PPi concentrations and to suppress calcification. The results identify a specific targeting motif in the NPP1 cytosolic tail that delivers PPi-generating NPP activity to osteoblast MVs for control of calcification. calcification; dileucine motif; NPP3  相似文献   

2.
Previous work has shown that acidosis prevents bone nodule formation by osteoblasts in vitro by inhibiting mineralisation of the collagenous matrix. The ratio of phosphate (Pi) to pyrophosphate (PPi) in the bone microenvironment is a fundamental regulator of bone mineralisation. Both Pi and PPi, a potent inhibitor of mineralisation, are generated from extracellular nucleotides by the actions of ecto‐nucleotidases. This study investigated the expression and activity of ecto‐nucleotidases by osteoblasts under normal and acid conditions. We found that osteoblasts express mRNA for a number of ecto‐nucleotidases including NTPdase 1–6 (ecto‐nucleoside triphosphate diphosphohydrolase) and NPP1‐3 (ecto‐nucleotide pyrophosphatase/phosphodiesterase). The rank order of mRNA expression in differentiating rat osteoblasts (day 7) was Enpp1 > NTPdase 4 > NTPdase 6 > NTPdase 5 > alkaline phosphatase > ecto‐5‐nucleotidase > Enpp3 > NTPdase 1 > NTPdase 3 > Enpp2 > NTPdase 2. Acidosis (pH 6.9) upregulated NPP1 mRNA (2.8‐fold) and protein expression at all stages of osteoblast differentiation compared to physiological pH (pH 7.4); expression of other ecto‐nucleotidases was unaffected. Furthermore, total NPP activity was increased up to 53% in osteoblasts cultured in acid conditions (P < 0.001). Release of ATP, one of the key substrates for NPP1, from osteoblasts, was unaffected by acidosis. Further studies showed that mineralised bone formation by osteoblasts cultured from NPP1 knockout mice was increased compared with wildtypes (2.5‐fold, P < 0.001) and was partially resistant to the inhibitory effect of acidosis. These results indicate that increased NPP1 expression and activity might contribute to the decreased mineralisation observed when osteoblasts are exposed to acid conditions. J. Cell. Physiol. 230: 3049–3056, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

3.
Li L  Buchet R  Wu Y 《Analytical biochemistry》2008,381(1):123-128
To elucidate the inhibition mechanisms of hydroxyapatite (HA), a biological model mimicking the mineralization process was developed. The addition of 4% (v/v) dimethyl sulfoxide (DMSO) in synthetic cartilage lymph (SCL) medium containing 2 mM calcium and 3.42 mM inorganic phosphate (Pi) at pH 7.6 and 37 °C produced HA as matrix vesicles (MVs) under physiological conditions. Such a model has the advantage of monitoring the HA nucleation process without interfering with other processes at the cellular or enzymatic level. Turbidity measurements allowed us to follow the process of nucleation, whereas infrared spectra and X-ray diffraction permitted us to identify HA. Mineral formation induced by DMSO and by MVs in the SCL medium produced crystalline HA in a similar manner. The nucleation model served to evaluate the inhibition effects of ATP, GTP, UTP, ADP, ADP-ribose, AMP, and pyrophosphate (PPi). Here 10 μM PPi, 100 μM nucleotide triphosphates (ATP, GTP, UTP), and 1 mM ADP inhibited HA formation directly, whereas 1 mM ADP-ribose and 1 mM AMP did not. This confirmed that the PPi group is a potent inhibitor of HA formation. Increasing the PPi concentration from 100 μM to 1 mM induced calcium pyrophosphate dihydrate. We propose that DMSO-induced HA formation could serve to screen putative inhibitors of mineral formation.  相似文献   

4.
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5′-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5′-monophosphate, and PPi by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5′-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.  相似文献   

5.
Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) represents the main subtype of the NPP family of nucleotide hydrolyzing enzymes. The ecto-enzyme hydrolyzes structurally diverse substrates and has recently been proposed as a drug target for immuno-oncology. To get more insights into the nature of the promiscuity of NPP1, we investigated its substrate preferences employing a broad range of natural nucleotides including ATP, UTP, diadenosine tetraphosphate (AP4A), cAMP, and cyclic guanosine-(2′,5′)-monophosphate-adenosine-(3″,5″)-monophosphate (2′,3″-cGAMP), as well as the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Despite their diverse structures, all substrates were converted to nucleoside 5′-monophosphates; 2′,3″-cGAMP yielded exclusively the nucleoside 5′-monophosphates AMP and GMP. In contrast, 3′,3″-bridged cyclic dinucleotides were not hydrolyzed. ATP was the most efficiently hydrolyzed substrate of NPP1, followed by AP4A and 2′,3″-cGAMP. UTP, cAMP and p-Nph-5′-TMP were much poorer substrates. A homology model of the human NPP1 was built based on the X-ray structure of its mouse orthologue. Docking studies were performed based on previously published mutagenesis data to rationalize the interactions of the different substrates and to explain the enzyme's preferences. The results provide an improved understanding of the interactions of NPP1 with its diverse substrates and will contribute to the validation of NPP1 as a drug target.  相似文献   

6.
Inorganic pyrophosphate generation and disposition in pathophysiology   总被引:6,自引:0,他引:6  
Inorganic pyrophosphate (PPi)regulates certain intracellular functions and extracellular crystaldeposition. PPi is produced, degraded, and transported byspecialized mechanisms. Moreover, dysregulated cellular PPiproduction, degradation, and transport all have been associated withdisease, and PPi appears to directly mediate specificdisease manifestations. In addition, natural and synthetic analogs ofPPi are in use or currently under evaluation asprophylactic agents or therapies for disease. This review summarizes recent developments in the understanding of how PPi is madeand disposed of by cells and assesses the body of evidence forpotentially significant physiological functions of intracellularPPi in higher organisms. Major topics addressed are recentlines of molecular evidence that directly link decreased and increasedextracellular PPi levels with diseases in which connectivetissue matrix calcification is disordered. To illustrate in depth theeffects of disordered PPi metabolism, this review weighsthe roles in matrix calcification of the transmembrane protein ANK,which regulates intracellular to extracellular movement ofPPi, and the PPi-generating phosphodiesterase nucleotide pyrophosphatase family isoenzyme plasma cell membrane glycoprotein-1 (PC-1).

  相似文献   

7.
Proteomic analysis of matrix vesicles (MVs) isolated from 17-day-old chicken embryo femurs revealed the presence of creatine kinase. In this report we identified the enzyme functionally and suggest that the enzyme may participate in the synthesis of ATP from ADP and phosphocreatine within the lumen of these organelles. Then, ATP is converted by nucleotide hydrolyzing enzymes such as Na+, K+-ATPase, protein kinase C, or alkaline phosphatase to yield inorganic phosphate (Pi), a substrate for mineralization. Alternatively, ATP can be hydrolyzed by a nucleoside triphosphate pyrophosphatase phosphodiesterase 1 producing inorganic pyrophosphate (PPi), a mineralization inhibitor. In addition, immunochemical evidence indicated that VDAC 2 is present in MVs that may serve as a transporter of nucleotides from the extracellular matrix. We discussed the implications of ATP production and hydrolysis by MVs as regulatory mechanisms for mineralization.  相似文献   

8.
It was found that CDP-choline was formed with good yield from 5′-CMP and choline phosphate or choline chloride by yeast cells. The effects of pyrophosphate (PPi) on the formation of UDPG, GDPM and CDP-choline from respective nucleoside monophosphate by yeast cells were studied. By the addition of PPi to the reaction mixture, the phosphorylation of G-6-P from glucose was inhibited and then the phosphorylation of nucleoside monophosphates was restrained. Such inhibition was reversed by the decomposition of PPi by inorganic pyrophosphatase of yeast cells. The addition of PPi after the formation of nucleotide derivatives caused the accumulation of UTP and GTP and molar yields from nucleotide as substrate was about 80%. But that of CTP was a little in the reaction system of CDP-choline synthesis. Further, this method seems to be suitable for the accumulation of sugar-1-phosphates.  相似文献   

9.
The effect of pyrophosphate (PPi) on labeled nucleotide incorporation into noncatalytic sites of chloroplast ATP synthase was studied. In illuminated thylakoid membranes, PPi competed with nucleotides for binding to noncatalytic sites. In the dark, PPi was capable of tight binding to noncatalytic sites previously vacated by endogenous nucleotides, thereby preventing their subsequent interaction with ADP and ATP. The effect of PPi on ATP hydrolysis kinetics was also elucidated. In the dark at micromolar ATP concentrations, PPi inhibited ATPase activity of ATP synthase. Addition of PPi to the reaction mixture at the step of preliminary illumination inhibited high initial activity of the enzyme, but stimulated its activity during prolonged incubation. These results indicate that the stimulating effect of PPi light preincubation with thylakoid membranes on ATPase activity is caused by its binding to ATP synthase noncatalytic sites. The inhibition of ATP synthase results from competition between PPi and ATP for binding to catalytic sites. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 956–962.  相似文献   

10.
Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K m for p-Nph-5′-TMP hydrolysis of 61.8 ± 5.2 μM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5′-TMP hydrolysis with K i values ranging 13–43 μM. Nucleotide analogs, α,β-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas α,β-metADP induced mixed inhibition, with K i ranging from 2 to 20 μM. Chromatographic analysis revealed that α,β-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and α,β-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.  相似文献   

11.
Ecto-nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) is the most important member of the NPP family, which consists of seven closely related proteins (NPP1–NPP7). This glycoprotein is a membrane-associated or secreted enzyme, which catalyzes the hydrolysis of a wide range of phosphodiester bonds, e.g., in nucleoside triphosphates, dinucleotides and nucleotide sugars. NPP1 plays a crucial role in various physiological functions including bone mineralization, soft-tissue calcification, and insulin receptor signaling. Recently, an upregulated expression of NPP1 has been observed in astrocytic brain cancers. Therefore, NPP1 has been proposed as a novel drug target for the treatment of glioblastoma. Despite their therapeutic potential, only few NPP1 inhibitors have been reported to date, which are in most cases non- or only moderately selective. The best investigated NPP1 inhibitors so far are nucleotide derivatives and analogs, however they are not orally bioavailable due to their high polarity. We identified thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives as a new class of NPP1 inhibitors with drug-like properties. Among the 25 derivatives investigated in the present study, 2-[(5-iodo-2-furanyl)methylene]thiazolo[3,2-a]benzimidazol-3(2H)-one (17) was found to be the most potent NPP1 inhibitor with a Ki value of 467 nM versus ATP as a substrate and an un-competitive mechanism of inhibition. Compound 17 did not inhibit other human ecto-nucleotidases, including NTPDase1 (CD39), NTPDases2-3, NPP2, NPP3, tissue-nonspecific alkaline phosphatase (TNAP), and ecto-5′-nucleotidase (eN, CD73), and is thus highly selective for NPP1.  相似文献   

12.
Acid phosphatase (EC 3.1.3.2) from rye germs is a glycoprotein of M, 90000 with subunit structure. The pH optimum for pNPP hydrolysis is 5.4. The best substrates for the enzyme are pNPP, PPi and ATP. In the presence of plant lectins an increase in AcPase activity was found. ConA causes a 20% decrease of Kmapp and a 50% increase of Vmaxapp with pNPP as substrate.  相似文献   

13.
The co-ordinated action of the two proton-transporting enzymes at the tonoplast of the CAM plants. daigremontiana, viz. the ATPase and the PPiase, was studied by measuring fluorescent dye quenching. The initial rates of ATP and PPi-dependent H+ transport into tonoplast vesicles were additive, i.e. the sum of the rates obtained with each substrate alone was in the range obtained with both substrates added together at the same time. Conversely, the activities of the two H+ pumps were non-additive in establishing the steady-state level, indicating that the final steady state was under thermodynamic control of a maximal attainable proton gradient. The initial rates of ATP-dependent H+ transport were stimulated enormously if ATP was added a few minutes after pre-energization of the vesicles with PPi. This stimulation was observed only when the PPiase was active. A similar effect was not found for PPi-dependent H+ transport after pre-energization with ATP. Hence, a PPiase-activated ATP-dependent H+ transport can be distinguished from the basic ATP- and the basic PPi-dependent H+ transport. In parallel a PPi-dependent stimulation of ATP hydrolysis in the absence of ionophores was measured, which can only be attributed to the activity of the PPiase. PPiase-activated ATP-dependent H+ transport depends on the presence of permeant anions. It shows properties of both H+ transport activities, i.e. the chloride and malate stimulation and the DCCD inhibition of the ATP-dependent H+ transport activity, the nitrate stimulation and the KF inhibition of the PPi-dependent H+ transport activity. Only MgPPi and MgATP were effective as the respective substrates. The PPiase-activated ATP-dependent H+ transport had a half life of about 5–9 minutes. It is concluded that the PPiase may play an important role in kinetic regulation of the ATPase, and implications for CAM metabolism are discussed.  相似文献   

14.
An enzyme from Entamoeba histolytica catalyzes the formation of acetyl phosphate and orthophosphate from acetate and inorganic pyrophosphate (PPi), but it displays much greater activity in the direction of acetate formation. It has been purified 40-fold and separated from interfering enzyme activities by chromatography. Its reaction products have been quantitatively established. ATP cannot replace PPi as phosphoryl donor in the direction of acetyl phosphate formation nor will any common nucleoside diphosphate replace orthophosphate as phosphoryl acceptor in the direction of acetate formation. The trivial name proposed for the new enzyme is acetate kinase (PPi).  相似文献   

15.
Extracellular inorganic pyrophosphate (PPi) is important in the regulation of mineralisation of bone, and in the pathogenesis of chondrocalcinosis, an arthritic disease in which calcium pyrophosphate dihydrate crystals form in articular cartilage. Nucleoside-triphosphate pyrophosphatase, which catalyses the formation of PPi, was previously observed at the surface of human articular chondrocytes in culture. A similar enzyme has been identified in osteoblast-like human bone cells in culture, and is active towards purine and pyrimidine nucleoside triphosphates. The enzyme has high affinity for ATP and is located on the cell surface, and thus could serve in the generation of extracellular PPi. Moreover, no other mechanism for the catabolism of small amounts of exogenous ATP is present in human bone cells. Further evidence for ecto-nucleoside-triphosphate pyrophosphatase serving in the generation of extracellular PPi in articular cartilage and bone was obtained by studying the ability of alternative substrates (which do not yield PPi) to inhibit generation of PPi from ATP. In both articular chondrocytes and bone cells, the enzyme exhibited an apparent preference for ATP over dinucleotide and phosphodiester substrates. Some potential inhibitors of the enzyme activity were also studied in both cell types. ADP moderately inhibited the activity but two bisphosphonate drugs were only slightly inhibitory.  相似文献   

16.
Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.  相似文献   

17.
The efflux of mitochondrial adenine nucleotide which is induced by addition of PPi to suspensions of rat liver mitochondria has been investigated. This efflux of adenine nucleotide is greatly stimulated by the uncoupler FCCP at 1 μM, Vmax being 6.7 nmol/min per mg protein as compared to 2.0 nmol/min per mg protein in its absence. The depletion process is inhibited by carboxyatractyloside. The Km for PPi of 1.25 mM is essentially unchanged when uncoupler is added. Quantitation of the individual adenine nucleotide species (ATP, ADP and AMP) and their relationship to the rate of efflux suggests that ADP is the predominant species being exchanged for PPi.  相似文献   

18.
《FEBS letters》1987,224(2):348-352
It is possible to obtain synthesis of PPi by artifical ion potentials in Rhodospirillum rubrum chromatophores. PPi can be formed by K+-diffusion gradients (Δψ), H+ gradients (ΔpH) or a combination of both. In contrast, ATP can only be synthesized by imposed Δψ or Δψ+ΔpH. For ATP formation there is also a threshold value of K+ concentration below which synthesis of ATP is not possible. Such a threshold is not found for PPi formation. Both PPi and ATP syntheses are abolished by addition of FCCP or nigericin and only marginally affected by electron transport inhibitors. The synthesis of PPi can be monitored for several minutes before it ceases, while ATP production stops within 30 s. As a result the maximal yield of PPi is 200 nmol PPi/μmol BChl, while that of ATP is no more than 25 nmol ATP/μmol BChl. The initial rates of syntheses were 0.50 μmol PPi/μmol BChl per min and 2.0 μmol ATP/μmol per min, respectively. These rates are approx. 50 and 20% of the respective photophosphorylation rates under saturating illumination.  相似文献   

19.
A latent RNAase activity stimulated by nucleoside triphosphates has been isolated from a yeast chromatin extract, by filtration on Sepharose 6B and hydroxyapatite chromatography. The RNAase was separated from a thermolabile proteic inhibitor on phosphocellulose. When separated from the inhibitor, the RNAase hydrolyses RNA to 5′-mononucleotides. Its activity is retained in the presence of EDTA, and 50% inhibited by 1 mM ATP or CTP. The RNAase is inhibited by the thermolabile component only in the presence of divalent cations. The activity is recovered upon addition of 0.01 mM ATP to the mixture. The Km for ATP is 10 μM. ATP can be replaced by other ribo- or deoxyribonucleoside triphosphates with varying efficiency but not by ADP, AMP or cAMP. These results suggest multiple interactions between the RNAase, a regulatory component, divalent cations and nucleoside triphosphates.  相似文献   

20.
A microprocedure for the colorimetric determination of inorganic pyrophosphate (PPi) in the presence or absence of orthophosphate (Pi) has been developed. PPi is estimated quantitatively as the amount of chromophore formed with molybdate reagent, 1-amino-2-naphthol-4-sulfonic acid in bisulfite and thiol reagent (monothioglycerol or 2-mercaptoethanol). The latter is obligatory for color formation. Pi is estimated without thiol reagent. The two chromophores differ in absorption spectra, the greatest difference being at 580 nm. For both, color develops fully by 10 min and is stable up to 1 hr. Just less than 0.4 μm PPi can be detemined. The extinction coefficients are 2.70 × 104 and 8.76 × 103 for PPi and Pi, respectively, both with thiol reagent present, and 2.77 × 103 for Pi with no thiol reagent.A ten-fold excess of Pi does not interfere with the determination of PPi and in fact can be estimated in the same mixture. A 15-fold excess, however, diminishes the accuracy of PPi estimations. Trichloroacetic acid and sodium fluoride inhibi color formation, but this inhibition is overcome by the addition of sodium acetate buffer, pH 4.0. Nucleoside triphosphates and adenosine 3′:5′-cyclic monophosphate are stable in the reaction mixture.The method was tested in assays of Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyltransferase, EC 2.7.7.6). Progress curves measured by either the rate of PPi formation or the rate of synthesis of labeled RNA were very similar. Product PPi formed by as little as 0.6 unit of RNA polymerase in a 225-μl incubation medium could be measured.An automated version of the method was devised which allows accurate determination of PPi down to 1 μm (without range expander attachment) at a sampling rate of 20–40 tubes/hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号