首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Chronic fibrosing liver injury is a major risk factor for hepatocarcinogenesis in humans. Mice with targeted deletion of Mdr2 (the murine ortholog of MDR3) develop chronic fibrosing liver injury. Hepatocellular carcinoma (HCC) emerges spontaneously in such mice by 50–60 weeks of age, providing a model of fibrosis-associated hepatocarcinogenesis. We used Mdr2−/− mice to investigate the hypothesis that activation of the hedgehog (Hh) signaling pathway promotes development of both liver fibrosis and HCC.

Methods

Hepatic injury and fibrosis, Hh pathway activation, and liver progenitor populations were compared in Mdr2−/− mice and age-matched wild type controls. A dose finding experiment with the Hh signaling antagonist GDC-0449 was performed to optimize Hh pathway inhibition. Mice were then treated with GDC-0449 or vehicle for 9 days, and effects on liver fibrosis and tumor burden were assessed by immunohistochemistry, qRT-PCR, Western blot, and magnetic resonance imaging.

Results

Unlike controls, Mdr2−/− mice consistently expressed Hh ligands and progressively accumulated Hh-responsive liver myofibroblasts and progenitors with age. Treatment of aged Mdr2-deficient mice with GDC-0449 significantly inhibited hepatic Hh activity, decreased liver myofibroblasts and progenitors, reduced liver fibrosis, promoted regression of intra-hepatic HCCs, and decreased the number of metastatic HCC without increasing mortality.

Conclusions

Hh pathway activation promotes liver fibrosis and hepatocarcinogenesis, and inhibiting Hh signaling safely reverses both processes even when fibrosis and HCC are advanced.  相似文献   

2.
Farnesoid X receptor (FXR) (nuclear receptor subfamily 1, group H, member 4) is a member of nuclear hormone receptor superfamily, which plays essential roles in metabolism of bile acids, lipid, and glucose. We previously showed spontaneously hepatocarcinogenesis in aged FXR(-/-) mice, but its relevance to human hepatocellular carcinoma (HCC) is unclear. Here, we report a systematical analysis of hepatocarcinogenesis in FXR(-/-) mice and FXR expression in human liver cancer. In this study, liver tissues obtained from FXR(-/-) and wild-type mice at different ages were compared by microarray gene profiling, histological staining, chemical analysis, and quantitative real-time PCR. Primary hepatic stellate cells and primary hepatocytes isolated from FXR(-/-) and wild-type mice were also analyzed and compared. The results showed that the altered genes in FXR(-/-) livers were mainly related to metabolism, inflammation, and fibrosis, which suggest that hepatocarcinogenesis in FXR(-/-) mice recapitulated the progression of human liver cancer. Indeed, FXR expression in human HCC was down-regulated compared with normal liver tissues. Furthermore, the proinflammatory cytokines, which were up-regulated in human HCC microenvironment, decreased FXR expression by inhibiting the transactivity of hepatic nuclear factor 1α on FXR gene promoter. Our study thereby demonstrates that the down-regulation of FXR has an important role in human hepatocarcinogenesis and FXR(-/-) mice provide a unique animal model for HCC study.  相似文献   

3.
4.
Overwhelming lines of epidemiological evidence have indicated that persistent infection with hepatitis C virus (HCV) is a major risk for the development of hepatocellular carcinoma (HCC). We have recently shown that HCV core protein mediates functional inactivation of the promyelocytic leukemia (PML) tumor suppressor pathway. However, the role of PML in HCC development yet remains unclear. To clarify the function of PML in liver carcinogenesis and HCV-associated pathogenesis we crossed PML-deficient mice with HCV transgene (HCV-Tg) expressing mice and treated the resulting animals with DEN/Phenobarbital, an established protocol for liver carcinogenesis. Seven months after treatment, livers were examined macroscopically and histologically. Genetic depletion of the tumor suppressor PML coincided with an increase in hepatocyte proliferation, resulting in development of multiple dysplastic nodules in 100% of the PML-deficient livers and of HCCs in 53%, establishing a tumor suppressive function of PML in the liver. In animals expressing the HCV-transgene in PML-deficient background, HCC development occurred even in 73%, while only 7% of their wildtype littermates developed HCC. The neoplastic nature of the tumors was confirmed by histology and expression of the HCC marker glutamine synthetase. Several pro- and antiapoptotic factors were tested for differential expression and liver carcinogenesis was associated with impaired expression of the proapoptotic molecule TRAIL in PML-deficient mice. In conclusion, this study provides first in vivo evidence that the tumor suppressor PML acts as an important barrier in liver carcinogenesis and HCV-dependent liver pathology.  相似文献   

5.
6.
Na B  Huang Z  Wang Q  Qi Z  Tian Y  Lu CC  Yu J  Hanes MA  Kakar S  Huang EJ  Ou JH  Liu L  Yen TS 《PloS one》2011,6(10):e26240
Hepatocellular carcinoma (HCC), the third leading cause of cancer deaths worldwide, is most commonly caused by chronic hepatitis B virus (HBV) infection. However, whether HBV plays any direct role in carcinogenesis, other than indirectly causing chronic liver injury by inciting the host immune response, remains unclear. We have established two independent transgenic mouse lines expressing the complete genome of a mutant HBV ("preS2 mutant") that is found at much higher frequencies in people with HCC than those without. The transgenic mice show evidence of stress in the endoplasmic reticulum (ER) and overexpression of cyclin D1 in hepatocytes. These mice do not show any evidence of chronic liver injury, but by 2 years of age a majority of the male mice develop hepatocellular neoplasms, including HCC. Unexpectedly, we also found a significant increase in hepatocarcinogenesis independent of necroinflammation in a transgenic line expressing the entire wildtype HBV. As in the mutant HBV mice, HCC was found only in aged--2-year-old--mice of the wildtype HBV line. The karyotype in all the three transgenic lines appears normal and none of the integration sites of the HBV transgene in the mice is near an oncogene or tumor suppressor gene. The significant increase of HCC incidence in all the three transgenic lines--expressing either mutant or wildtype HBV--therefore argues strongly that in absence of chronic necroinflammation, HBV can contribute directly to the development of HCC.  相似文献   

7.
A complementary way for the assessment of HCC prognosis is represented by the analysis of molecular markers. Thus, immunohistochemical assessment of proliferation can describe tumor aggressiveness, probability of local recurrence or metastasis potential, being very useful for the assessment of recurrence-free survival and survival until death. The aim of our study was to assess proliferating cell nuclear antigen activity in HCC and dysplastic nodules as compared with surrounding nonneoplasic areas. Immunohistochemical techniques were thus performed on the samples obtained by ultrasound-guided liver biopsies or intraoperative biopsies, in 32 patients with HCC, as well as in 3 patients with dysplastic nodules ocurring in liver cirrhosis. Expression of PCNA within extranodular areas of the HCC patients in the absence or presence of cirrhosis, was increasing from 40% to 70%, respectively. PCNA expression further increased within intranodular areas of dysplastic nodules and HCC, to 100% and 96.88%, respectively. A progressive increase of the mean values of PCNA-LI was also observed from extranodular areas without or with cirrhosis, towards intranodular areas of dysplastic nodules and HCC (4.2%, 6.8%, 31.9%, respectively). Dysplastic nodules can thus be considered lesions with a high-proliferation rate, representing an early stage of hepatocarcinogenesis. This supported the current recommendations for borderline hepatocellular nodules identified by ultrasound, which indicate an aggressive treatment similar to malignant lesions. In summary, we demonstrated a progressively increasing rate of cellular proliferation, from extranodular non-neoplasic areas to intranodular areas (dysplastic nodules and HCC), as reflected by an increased expression of proliferating cell nuclear antigen labelling index.  相似文献   

8.
Due to the development of the imaging techniques and liver surgery, pathologists are encountered more frequently with preneoplastic liver lesions. Well-defined stages of human hepatocarcinogenesis have been distinguished recently. Dysplastic foci represent the earliest stage of this process. Small-cell dysplastic foci are tumor precursors, but the large-cell form of this lesion does not progress further. The next stage is the dysplastic nodule, this larger lesion can be recognized by imaging techniques and gross examination of the specimen. Low- and high-risk forms are distinguished based on the level of cytological and structural atypia. The small hepatocellular carcinomas have a diameter of less than 2 cm by definition. The small HCC of indistinctly nodular type is equivalent of in situ carcinomas in other organs and designated sometimes as early HCC. The small HCC of the distinctly nodular type can be interpreted as advanced cancer despite its small size. The distinction between these lesions can be facilitated by ancillary techniques. The so-called capillarization of the liver sinusoids during the progression is characterized by the increased expression of endothelial markers as CD31 and CD34. Immunostaining for CD44, beta-catenin and p53 has prognostic value. Molecular biological techniques reveal gradual epigenetic and DNA changes during the process of hepatocarcinogenesis. Global gene expression profiling of hepatocellular carcinomas may result in a new classification of this tumor and can reveal new potential therapeutic targets.  相似文献   

9.
Hepatocellular carcinoma (HCC) remains a major problem in oncology. The molecular mechanisms which underlie its pathogenesis are poorly understood. Recently the Small Heterodimer Partner (SHP), an orphan nuclear receptor, was suggested to be involved as a tumor suppressor in hepatocellular carcinoma development. To date, there are no such studies regarding fibrolamellar carcinoma, a less common variant of HCC, which usually affects young people and displays distinct morphological features. The aim of our project was to evaluate the SHP levels in typical and fibrolamellar hepatocellular carcinoma with respect to the levels of one of the cell cycle regulators, cyclin D1. We assessed the immunoreactivity levels of SHP and cyclin D1 in 48 typical hepatocellular carcinomas, 9 tumors representing the fibrolamellar variant, 29 non malignant liver tissues and 7 macroregenerative nodules. We detected significantly lower SHP immunoreactivity in hepatocellular carcinoma when compared to non malignant liver tissue. Moreover, we found that SHP immunoreactivity is reduced in fibrolamellar carcinoma when compared to typical hepatocellular carcinoma. We also found that SHP is more commonly lost in HCC which arises in the liver with steatosis. The comparison between the cyclin D1 and SHP expression revealed the negative correlation between these proteins in the high grade HCC. Our results indicate that the impact of loss of SHP protein may be even more pronounced in fibrolamellar carcinoma than in a typical form of HCC. Further investigation of mechanisms through which the loss of SHP function may influence HCC formation may provide important information in order to design more effective HCC therapy.  相似文献   

10.
MicroRNA 122对肝癌细胞基因表达谱的影响   总被引:1,自引:0,他引:1  
为研究microRNA(miR-122)对肝癌细胞Hep3B基因表达谱的影响,并探讨其在肝癌发过程中的可能作用,构建了miR-122稳定高表达的Hep3B细胞,利用基因表达谱芯片技术筛选得到和对照组细胞比较的差异表达基因.研究结果显示,2倍以上变化的差异表达基因有490个,其中上调的有345个,下调的有145个.这些基因中有16个与肿瘤发生相关,其它基因涉及细胞周期、信号转导、细胞凋亡和细胞增殖分化等众多生物学过程.这些结果提示,miR-122可能在肝癌发生的过程中发挥作用,并可能与这些差异表达基因密切相关.另外,还结合生物信息学方法,在下调表达的基因中预测了miR-122可能直接作用的靶基因.本研究初步探讨了miR-122在肝癌细胞中的生物学功能,为进一步研究miR-122在肝癌发生中的作用奠定了基础,同时也为miRNA的生物学功能及其作用机制的研究提供了一些参考.  相似文献   

11.
The generation of knockout mice for the Cbx7 gene validates the tumor suppressor role of CBX7, whose expression is lost in several human malignancies. Indeed, these mice developed liver and lung adenomas and carcinomas. Cyclin E overexpression due to the lack of Cbx7 negative regulation of its expression likely accounts for the phenotype of the Cbx7-KO mice. A similar mechanism is likely involved in human lung carcinogenesis, since cyclin E upregulation associated with the loss of CBX7 expression has been observed in most of the human lung carcinomas analyzed.  相似文献   

12.
Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated.  相似文献   

13.
14.
BRE, also known as TNFRSF1A modulator and BRCC45, is an evolutionarily highly conserved protein. It is a death receptor-associated protein in cytoplasm and a component of BRCA1/2-containing DNA repair complex in nucleus. BRE was found to have anti-apoptotic activity. Over-expression of BRE by transfection promoted survival of cell lines against apoptotic induction; whereas depletion of the protein by siRNA resulted in the opposite. In vivo anti-apoptotic activity of BRE was demonstrated by significant attenuation of Fas-induced acute fulminant hepatitis in transgenic mice expressing the human protein specifically in the liver. BRE was also implicated in tumor promotion by the accelerated tumor growth of Lewis Lung carcinoma transfected with human BRE; and by high expression of BRE specifically in the tumoral regions of human hepatocellular carcinoma (HCC). The present study was to test directly if transgenic expression of BRE in livers could promote HCC development in neonatal diethylnitrosamine model. By 8 months after tumor induction, the maximal sizes of tumor nodules of transgenic mice were significantly larger than those of the non-transgenic controls, although the numbers of tumor nodules between the two groups did not significantly differ. Importantly, as in human HCC, the mouse endogenous BRE level was up-regulated in mouse HCC nodules. These results show that BRE over-expression can indeed promote growth, though not initiation, of liver tumors. Furthermore, the common occurrence of BRE over-expression in human and mouse HCC suggests that up-regulation of BRE is functionally important in liver tumor development.  相似文献   

15.
We previously reported that the abnormal BTG2 expression was related to genesis/development of hepatocellular carcinoma (HCC). The aim of this study was to evaluate the BTG2 expression in HCC compared with p53, cyclin D1, and cyclin E. For this purpose, modified diethylnitrosamine (DEN)-induced primary HCC rat model was established. Target proteins and mRNAs were measured by western blot and RT-PCR/northern blot, respectively. In rat liver, expression of BTG2 and other proteins was determined by western blot, and BTG2 mRNA in HCC/normal tissues was detected by high-flux tissue microarray (TMA) and in situ hybridization (ISH). BTG2 mRNA/protein expression was increased in fetal liver, 7701, and LO2 cell lines but decreased in HepG2 cells. BTG2/p53 were expressed early after DEN treatment, peaked at 5?weeks and decreased gradually thereafter. Cyclin-D1/Cyclin-E expression increased significantly with the tumor progression. BTG2 mRNA was expressed in 71.19% HCC by ISH and correlated with differentiation. Expression of p53/cyclin D1/cyclin E was positive in 82.35/94.12/76.47% BTG2 mRNA-negative tissues, respectively. BTG2 protein expression was lost in 32.2% (19/59) HCC tissues, and the mRNA/protein expression correlated significantly with the increasing tumor grade (P?相似文献   

16.
S-adenosylmethionine arises as a central molecule in the preservation of liver homeostasis as a chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. In the present work, we have attempted a comprehensive analysis of proteins associated with hepatocarcinogenesis in MAT1A knock out mice using a combination of two-dimensional electrophoresis and mass spectrometry, to then apply the resulting information to identify hallmarks of human HCC. Our results suggest the existence of individual-specific factors that might condition the development of preneoplastic lesions. Proteomic analysis allowed the identification of 151 differential proteins in MAT1A-/- mice tumors. Among all differential proteins, 27 changed in at least 50% of the analyzed tumors, and some of these alterations were already detected months before the development of HCC in the KO liver. The expression level of genes coding for 13 of these proteins was markedly decreased in human HCC. Interestingly, seven of these genes were also found to be down-regulated in a pretumoral condition such as cirrhosis, while depletion of only one marker was assessed in less severe liver disorders.  相似文献   

17.
SV40 T/t antigen-induced liver tumors from transgenic mice were analyzed by Restriction Landmark Genomic Scanning (RLGS). Using NotI as the restriction landmark, RLGS targets CpG islands found in gene-rich regions of the genome. Since many RLGS landmarks are mapped, the candidate gene approach can be used to help determine which genes are altered in tumors. RLGS analysis revealed one tumor-specific amplification mapping close to CcnA2 (cyclin A2) and Fgf2 (fibroblast growth factor 2). Southern analysis confirmed that both oncogenes are amplified in this tumor and in a second, independent liver tumor. Whereas Fgf2 RNA is undetectable in tumors, CcnA2 RNA and cyclin A2 protein was overexpressed in 25 and 50% of tumors, respectively. Combining RLGS with the candidate gene approach indicates that cyclin A2 amplification and overexpression is a likely selected event in transgenic mouse liver tumors. Our results also indicate that our mouse model for liver tumorigenesis in mice accurately recapitulates events observed in human hepatocellular carcinoma.  相似文献   

18.
19.
Hepatocellular carcinomas (HCCs) are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV) infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis.

Conclusions

A diagnostic molecular signature complementing conventional pathologic assessment was identified.  相似文献   

20.
The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号