首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Population outbreaks of the coral-eating starfish, Acanthaster planci , are hypothesized to spread to many localities in the Indo-Pacific Ocean through dispersal of planktonic larvae. To elucidate the gene flow of A. planci across the Indo-Pacific in relation to ocean currents and to test the larval dispersal hypothesis, the genetic structure among 23 samples over the Indo-Pacific was analysed using seven highly polymorphic microsatellite loci. The F -statistics and genetic admixture analysis detected genetically distinct groups in accordance with ocean current systems, that is, the Southeast African group (Kenya and Mayotte), the Northwestern Pacific group (the Philippines and Japan), Palau, the North Central Pacific group (Majuro and Pohnpei), the Great Barrier Reef, Fiji, and French Polynesia, with a large genetic break between the Indian and Pacific Oceans. A pattern of significant isolation by distance was observed among all samples ( P =  0.001, r  = 0.88, n  = 253, Mantel test), indicating restricted gene flow among the samples in accordance with geographical distances. The data also indicated strong gene flow within the Southeast African, Northwestern Pacific, and Great Barrier Reef groups. These results suggest that the western boundary currents have strong influence on gene flow of this species and may trigger secondary outbreaks.  相似文献   

2.
One of the most significant biological disturbances on a tropical coral reef is a population outbreak of the fecund, corallivorous crown-of-thorns sea star, Acanthaster planci. Although the factors that trigger an initial outbreak may vary, successive outbreaks within and across regions are assumed to spread via the planktonic larvae released from a primary outbreak. This secondary outbreak hypothesis is predominantly based on the high dispersal potential of A. planci and the assertion that outbreak populations (a rogue subset of the larger population) are genetically more similar to each other than they are to low-density non-outbreak populations. Here we use molecular techniques to evaluate the spatial scale at which A. planci outbreaks can propagate via larval dispersal in the central Pacific Ocean by inferring the location and severity of gene flow restrictions from the analysis of mtDNA control region sequence (656 specimens, 17 non-outbreak and six outbreak locations, six archipelagos, and three regions). Substantial regional, archipelagic, and subarchipelagic-scale genetic structuring of A. planci populations indicate that larvae rarely realize their dispersal potential and outbreaks in the central Pacific do not spread across the expanses of open ocean. On a finer scale, genetic partitioning was detected within two of three islands with multiple sampling sites. The finest spatial structure was detected at Pearl & Hermes Atoll, between the lagoon and forereef habitats (<10 km). Despite using a genetic marker capable of revealing subtle partitioning, we found no evidence that outbreaks were a rogue genetic subset of a greater population. Overall, outbreaks that occur at similar times across population partitions are genetically independent and likely due to nutrient inputs and similar climatic and ecological conditions that conspire to fuel plankton blooms.  相似文献   

3.
We present data on the genetic diversity and phylogenetic affinities of N2-fixing unicellular cyanobacteria in the plankton of the tropical North Atlantic Ocean. Our dinitrogenase gene (nifH) sequences grouped together with a group of cyanobacteria from the subtropical North Pacific; another subtropical North Pacific group was only distantly related. Most of the 16S ribosomal DNA sequences from our tropical North Atlantic samples were closely allied with sequences from a symbiont of the diatom Climacodium frauenfeldianum. These findings suggest a complex pattern of evolutionary and ecological divergence among unicellular cyanobacteria within and between ocean basins.  相似文献   

4.
We studied the genetic diversity of a coral reef fish species to investigate the origin of the differentiation. A total of 727 Acanthurus triostegus collected from 15 locations throughout the Pacific were analyzed for 20 polymorphic loci. The genetic structure showed limited internal disequilibrium within each population; 3.7% of the loci showed significant Hardy-Weinberg disequilibrium, mostly associated with Adh*, and we subsequently removed this locus from further analysis of geographic pattern. The genetic structure of A. triostegus throughout the tropical Pacific Ocean revealed a strong geographic pattern. Overall, there was significant population differentiation (multilocus F(ST) = 0.199), which was geographically structured according to bootstraps of neighbor-joining analysis on Nei's unbiased genetic distances and AMOVA analysis. The genetic structure revealed five geographic groups in the Pacific Ocean: western Pacific (Guam, Philippines, Palau, and Great Barrier Reef); central Pacific (Solomons, New Caledonia, and Fiji); and three groups made up of the eastern populations, namely Hawaiian Archipelago (north), Marquesas (equatorial), and southern French Polynesia (south) that incorporates Clipperton Island located in the northeastern Pacific. In addition, heterozygosity values were found to be geographically structured with higher values grouped within Polynesian and Clipperton populations, which exhibited lower population size. Finally, the genetic differentiation (F(ST)) was significantly correlated with geographic distance when populations from the Hawaiian and Marquesas archipelagos were separated from all the other locations. These results show that patterns of differentiation vary within the same species according to the spatial scale, with one group probably issued from vicariance, whereas the other followed a pattern of isolation by distance. The geographic pattern for A. triostegus emphasizes the diversity of the evolutionary processes that lead to the present genetic structure with some being more influential in certain areas or according to a particular spatial scale.  相似文献   

5.
Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species.  相似文献   

6.
Population structure of the sablefish (Anoplopoma fimbria) in the northeastern Pacific Ocean was determined using three approaches: geometric morphometrics (14 landmarks), mitochondrial DNA (fragment of COI gene), and nuclear DNA (four microsatellite loci). Samples came from the Bering Sea, Gulf of Alaska, offshore Oregon, and offshore the mid‐Baja California Peninsula (at San Quintin). Differences in body shape were grouped in the samples from the north (Bering Sea and Gulf of Alaska). A slight but significant population structure was also observed in allele frequencies of microsatellites, FST values, amova , and Bayesian individual assignment tests; however, analyses of population structure using mtDNA did not reveal any population differentiation. Differences in population structure detected by distinct approaches, in addition to the moderately high haplotype diversity and low nucleotide diversity of the COI fragment, suggest recent and developing population differentiation in the sablefish.  相似文献   

7.
Background

Two deep-sea eels collected from the Western Pacific Ocean are described in this study. Based on their morphological characteristics, the two deep-sea eel specimens were assumed to belong to the cusk-eel family Ophidiidae and the cutthroat eel family Synaphobranchidae.

Methods and results

To accurately identify the species of the deep-sea eel specimens, we sequenced the mitochondrial genes (cytochrome c oxidase subunit I [COI] and 16S ribosomal RNA [16S rRNA]). Through molecular phylogenetic analysis based on mtDNA COI and 16S rRNA gene sequences, these species clustered with the genera Bassozetus and Synaphobranchus, suggesting that the deep-sea eel specimens collected are two species from the genera Bassozetus and Synaphobranchus in the Western Pacific Ocean, respectively.

Conclusions

This is the first study to report new records of the genera Bassozetus and Synaphobranchus from the Western Pacific Ocean based on COI and 16S rRNA genes

  相似文献   

8.
We study 117 Pacific walrus samples from three rookeries within the western part of Chukchi Sea (Cape Vankarem, Cape Serdtse-Kamen, and Kolyuchin Island). We analyze the variability of nuclear (20 microsatellite loci) and mitochondrial DNA (three fragments). Two microsatellite loci which are described as microsatellites for the first time are used in this study: repeated sequences within introns of Coro1c and Plod2 genes. A high degree of genetic diversity is demonstrated for both nuclear and mitochondrial markers compared to Atlantic walrus. A high degree of genetic diversity is preserved within populations of Pacific walrus, despite a strong decline in the recent past. We discover the absence of significant differentiation for microsatellite loci and the presence of weak differentiation for mtDNA (mainly for a D-loop fragment). Walrus specimens that use the rookeries of the western part of Chukchi Sea are thought to belong to a single reproductive group.  相似文献   

9.
We present data on the genetic diversity and phylogenetic affinities of N2-fixing unicellular cyanobacteria in the plankton of the tropical North Atlantic Ocean. Our dinitrogenase gene (nifH) sequences grouped together with a group of cyanobacteria from the subtropical North Pacific; another subtropical North Pacific group was only distantly related. Most of the 16S ribosomal DNA sequences from our tropical North Atlantic samples were closely allied with sequences from a symbiont of the diatom Climacodium frauenfeldianum. These findings suggest a complex pattern of evolutionary and ecological divergence among unicellular cyanobacteria within and between ocean basins.  相似文献   

10.
The subphylum Cephalochordata (lancelets) is a relatively small taxonomic group in contrast to the subphyla Urochordata and Vertebrata. As an initial step to determine whether lancelets exhibit small genetic divergence in keeping with their conservative body organization or large genetic variation, four Branchiostoma species from the Pacific (B. belcheri and B. malayanum) and Atlantic (B. floridae and B. lanceolatum) Oceans were genetically compared using partial mitochondrial DNA sequences of the cytochrome oxidase c subunit I (COI) and 16S ribosomal RNA (16S rRNA) genes. In both genes, large genetic differences were revealed between the Pacific and Atlantic species, as well as within the former. Two maximum-likelihood trees from the COI and 16S rRNA genes showed that the Pacific and Atlantic lancelets were reciprocally clustered into different clades. Furthermore, both gene trees consistently exhibited deep phylogenetic separation between the two oceans. The estimated divergence time suggested that differentiation may have followed the migration of ancestral lancelets from the Pacific to the Atlantic Oceans via the Tethys Sea.  相似文献   

11.
Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo‐Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.  相似文献   

12.
Coastal lagoons represent habitats with widely heterogeneous environmental conditions, particularly as regards salinity and temperature, which fluctuate in both space and time. These characteristics suggest that physical and ecological factors could contribute to the genetic divergence among populations occurring in coastal lagoon and open-coast environments. This study investigates the genetic structure of Holothuria polii at a micro-geographic scale across the Mar Menor coastal lagoon and nearby marine areas, estimating the mitochondrial DNA variation in two gene fragments, cytochrome oxidase I (COI) and 16S rRNA (16S). Dataset of mitochondrial sequences was also used to test the influence of environmental differences between coastal lagoon and marine waters on population genetic structure. All sampled locations exhibited high levels of haplotype diversity and low values of nucleotide diversity. Both genes showed contrasting signals of genetic differentiation (non-significant differences using COI and slight differences using 16S, which could due to different mutation rates or to differential number of exclusive haplotypes. We detected an excess of recent mutations and exclusive haplotypes, which can be generated as a result of population growth. However, selective processes can be also acting on the gene markers used; highly significant generalized additive models have been obtained considering genetic data from 16S gene and independent variables such as temperature and salinity.  相似文献   

13.
The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.  相似文献   

14.
In this study we analysed mitochondrial DNA variation in Penaeus kerathurus prawns collected from seven locations along a transect across the Siculo–Tunisian region in order to verify if any population structuring exists over a limited geographical scale and to delineate the putative transition zone with sufficient accuracy. Partial DNA sequences of COI and 16S genes were analysed. In contrast to the highly conservative 16S gene, the COI sequences exhibited sufficient diversity for population analysis. The COI gene revealed low levels of haplotype and nucleotide diversities. The size of the annual landings of this commercial species suggests large population sizes. Hence, the low genetic diversity detected in this study could indicate a possible reduction in effective population sizes in the past. We detected significant genetic differentiation between eastern and western populations likely due to restricted gene flow across the Siculo–Tunisian boundary. We discuss the different evolutionary forces that may have shaped the genetic variation and suggest that the genetic divide is probably maintained by present-day dispersal limitation. R. Zitari-Chatti and N. Chatti are contributed equally to the work.  相似文献   

15.
The spatial distribution and diversity of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria (hereinafter referred to as ammonia oxidizers) in the Arctic Ocean were determined. The presence of ammonia oxidizers was detected by PCR amplification of 16S rRNA genes using a primer set specific for this group of organisms (nitA and nitB, which amplifies a 1.1-kb fragment between positions 137 and 1234, corresponding to Escherichia coli 16S rDNA numbering). We analyzed 246 samples collected from the upper water column (5 to 235 m) during March and April 1995, September and October 1996, and September 1997. Ammonia oxidizers were detected in 25% of the samples from 5 m, 80% of the samples from 55 m, 88% of the samples from 133 m, and 50% of the samples from 235 m. Analysis of nitA-nitB PCR product by nested PCR-denaturing gradient gel electrophoresis (DGGE) showed that all positive samples contained the same major band (band A), indicating the presence of a dominant, ubiquitous ammonia oxidizer in the Arctic Ocean basin. Twenty-two percent of the samples contained additional major bands. These samples were restricted to the Chukchi Sea shelf break, the Chukchi cap, and the Canada basin; areas likely influenced by Pacific inflow. The nucleotide sequence of the 1.1-kb nitA-nitB PCR product from a sample that contained only band A grouped with sequences designated group 1 marine Nitrosospira-like sequences. PCR-DGGE analysis of 122 clones from four libraries revealed that 67 to 71% of the inserts contained sequences with the same mobility as band A. Nucleotide sequences (1.1 kb) of another distinct group of clones, found only in 1995 samples (25%), fell into the group 5 marine Nitrosomonas-like sequences. Our results suggest that the Arctic Ocean beta-proteobacterial ammonia oxidizers have low diversity and are dominated by marine Nitrosospira-like organisms. Diversity appears to be higher in Western Arctic Ocean regions influenced by inflow from the Pacific Ocean through the Bering and Chukchi seas.  相似文献   

16.
Marine systems have traditionally been thought of as “open” with few barriers to gene flow. In particular, many marine organisms in the Southern Ocean purportedly possess circumpolar distributions that have rarely been well verified. Here, we use the highly abundant and endemic Southern Ocean brittle star Ophionotus victoriae to examine genetic structure and determine whether barriers to gene flow have existed around the Antarctic continent. Ophionotus victoriae possesses feeding planktotrophic larvae with presumed high dispersal capability, but a previous study revealed genetic structure along the Antarctic Peninsula. To test the extent of genetic differentiation within O. victoriae, we sampled from the Ross Sea through the eastern Weddell Sea. Whereas two mitochondrial DNA markers (16S rDNA and COI) were employed to allow comparison to earlier work, a 2b‐RAD single‐nucleotide polymorphism (SNP) approach allowed sampling of loci across the genome. Mitochondrial data from 414 individuals suggested three major lineages, but 2b‐RAD data generated 1,999 biallelic loci that identified four geographically distinct groups from 89 samples. Given the greater resolution by SNP data, O. victoriae can be divided into geographically distinct populations likely representing multiple species. Specific historical scenarios that explain current population structure were examined with approximate Bayesian computation (ABC) analyses. Although the Bransfield Strait region shows high diversity possibly due to mixing, our results suggest that within the recent past, dispersal processes due to strong currents such as the Antarctic Circumpolar Current have not overcome genetic subdivision presumably due to historical isolation, questioning the idea of large open circumpolar populations in the Southern Ocean.  相似文献   

17.
The black tiger shrimp (Penaeus monodon) is an ecologically and economically important penaeid species and is widely distributed in the Indo-Pacific region. Here we investigated the genetic diversity of P. monodon (n = 355) from eight geographical regions by genotyping at 10 microsatellite loci. The average observed heterozygosity at various loci ranged from 0.638 to 0.743, indicating a high level of genetic variability in this region. Significant departures from Hardy-Weinberg equilibrium caused by heterozygote deficiency were recorded for most loci and populations. Pairwise F(ST) and R(ST) values revealed genetic differentiation among the populations. Evidence from the assignment test showed that the populations in the West Indian Ocean were unique, whereas other populations examined were partially admixed. In addition, the non-metric multidimensional scaling analysis indicated the presence of three geographic groups in the Indo-Pacific region, i.e. the African populations, a population from western Thailand and the remaining populations as a whole. We also sequenced and analysed the mitochondrial control region (mtCR) in these shrimp stocks to determine whether the nuclear and mitochondrial genomes show a similar pattern of genetic differentiation. A total of 262 haplotypes were identified, and nucleotide divergence among haplotypes ranged from 0.2% to 16.3%. Haplotype diversity was high in all populations, with a range from 0.969 to 1. Phylogenetic analysis using the mtCR data revealed that the West Indian Ocean populations were genetically differentiated from the West Pacific populations, consistent with the microsatellite data. These results should have implications for aquaculture management and conservation of aquatic diversity.  相似文献   

18.
Deep‐sea octopuses of the genus Muusoctopus are thought to have originated in the Pacific Northern Hemisphere and then diversified throughout the Pacific and into the rest of the World Ocean. However, this hypothesis was inferred only from molecular divergence times. Here, the ancestral distribution and dispersal routes are estimated by Bayesian analysis based on a new phylogeny including 38 specimens from the south‐eastern Pacific Ocean. Morphological data and molecular sequences of three mitochondrial genes (16S rRNA, COI and COIII) are presented. The morphological data confirm that specimens newly acquired from off the coast of Chile comprise two species: Muusoctopus longibrachus and the poorly described species, Muusoctopus eicomar. The latter is here redescribed and is clearly distinguished from M. longibrachus and other closely related species in the region. A gene tree was built using Bayesian analysis to infer the phylogenetic position of these species within the species group, revealing that a large genetic distance separates the two sympatric Chilean species. M. longibrachus is confirmed as the sister species of Muusooctopus eureka from the Falkland Islands; while M. eicomar is a sister species of Muusoctopus yaquinae from the North Pacific, most closely related to the amphi‐Atlantic species Muusoctopus januarii. Molecular divergence times and ancestral distribution analyses suggest that genus Muusoctopus may have originated in the North Atlantic: one lineage dispersed directly southward to the Magellan region and another dispersed southward along the Eastern Pacific to the Southern Ocean and Antarctica. The Muusoctopus species in the Southern Hemisphere have different phylogenetic origins and represent independent invasions of this region.  相似文献   

19.
There has been an increasing concern about shark overexploitation in the last decade, especially for open ocean shark species, where there is a paucity of data about their life histories and population dynamics. Little is known regarding the population structure of the pelagic thresher shark, Alopias pelagicus. Though an earlier study using mtDNA control region data, showed evidence for differences between eastern and western Pacific populations, the study was hampered by low sample size and sparse geographic coverage, particularly a lack of samples from the central Pacific. Here, we present the population structure of Alopias pelagicus analyzing 351 samples from six different locations across the Pacific Ocean. Using data from mitochondrial DNA COI sequences and seven microsatellite loci we found evidence of strong population differentiation between western and eastern Pacific populations and evidence for reciprocally monophyly for organelle haplotypes and significant divergence of allele frequencies at nuclear loci, suggesting the existence of two Evolutionarily Significant Units (ESU) in the Pacific Ocean. Interestingly, the population in Hawaii appears to be composed of both ESUs in what seems to be clear sympatry with reproductive isolation. These results may indicate the existence of a new cryptic species in the Pacific Ocean. The presence of these distinct ESUs highlights the need for revised management plans for this highly exploited shark throughout its range.  相似文献   

20.
Few genetic data are currently available to assess patterns of population differentiation and speciation in planktonic taxa that inhabit the open ocean. A phylogenetic study of the oceanic copepod family Eucalanidae was undertaken to develop a model zooplankton taxon in which speciation events can be confidently identified. A global survey of 20 described species (526 individuals) sampled from 88 locations worldwide found high levels of cryptic diversity at the species level. Mitochondrial (16S rRNA, CO1) and nuclear (ITS2) DNA sequence data support 12 new genetic lineages as highly distinct from other populations with which they are currently considered conspecific. Out of these 12, at least four are new species. The circumglobal, boundary current species Rhincalanus nasutus was found to be a cryptic species complex, with genetic divergence between populations unrelated to geographic distance. 'Conspecific' populations of seven species exhibited varying levels of genetic differentiation between Atlantic and Pacific basins, suggesting that continental landmasses form barriers to dispersal for a subset of circumglobal species. A molecular phylogeny of the family based on both mitochondrial (16S rRNA) and nuclear (ITS2, 18S rRNA) gene loci supports monophyly of the family Eucalanidae, all four eucalanid genera and the 'pileatus' and 'subtenuis' species groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号