首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The contribution of intracellular calcium stores to Mannheimia haemolytica leukotoxin (LKT)-induced increase in cytosolic calcium concentration was studied by pharmacologically inhibiting transport of calcium across the plasma and endoplasmic reticulum membranes of bovine neutrophils exposed to LKT. Active intracellular storage of calcium by sarcoplasmic/endoplasmic reticulum calcium ATPase, influx of extracellular calcium across the plasma membrane, and release of stored calcium via inositol triphosphate receptors and ryanodine-sensitive calcium channels were inhibited using thapsigargin, lanthanum chloride, xestospongin C, and magnesium chloride, respectively. Pre-incubation with thapsigargin attenuated the increase in cytosolic calcium concentration produced by LKT, thus confirming the involvement of intracellular calcium stores. Inhibitory effects of lanthanum chloride, xestospongin C, and magnesium chloride indicated that the increase in cytosolic calcium concentration induced by LKT resulted from both influx of calcium across the plasma membrane and release of calcium from intracellular stores.  相似文献   

3.
The versatility of Ca(2+) as a messenger in multiple signaling events requires that the concentration of calcium ions within the cytoplasm be highly regulated. In particular, the release of calcium from intracellular stores must often be linked to calcium influx across the cell membrane. Capacitative calcium entry, whereby the depletion of intracellular Ca(2+) stores induces the influx of extracellular calcium, is a crucial element of concerted calcium signaling. Investigations into the phenomenon are contributing to a new appreciation for the organized cytoplasmic framework that supports calcium signaling.  相似文献   

4.
We have studied the effects of extracellular nucleotides on the cytosolic free calcium concentration [( Ca2+]i) in J774 macrophages using quin2 and indo-1 as indicator dyes. Micromolar quantities of ATP induced a biphasic increase in [Ca2+]i: a rapid and transient increase (peak I) which was due to mobilization of Ca2+ from intracellular stores and a second more sustained elevation (peak II) due to influx of extracellular Ca2+. The sustained peak II elevation had two components, a "low threshold" (1 microM ATP) response which saturated at 10-50 microM ATP and a "high threshold" response, apparent at [ATP] greater than 100 microM. The latter component was not seen with nucleotides other than ATP and correlated with an ATP-induced generalized increase in plasma membrane permeability. A variant J774 cell line was isolated which does not demonstrate this ATP-induced increase in plasma membrane permeability; nevertheless, it demonstrated both the release of Ca2+ from intracellular stores and the low threshold component of the Ca2+ influx across the plasma membrane in response to nucleoside di- and triphosphates. Several lines of evidence indicate that the fully ionized (i.e. free acid) forms of nucleoside di- and triphosphates were the ligands that mediated these increases in [Ca2+]i. These data show that extracellular nucleotides mediate Ca2+ fluxes by two distinct mechanisms in J774 cells. In one, the rise in [Ca2+]i is due to release of Ca2+ from intracellular stores and Ca2+ influx across the plasma membrane. This response is elicited preferentially by the free acid forms of purine and pyrimidine nucleoside di- and triphosphates. In the other, the rise in [Ca2+]i reflects a more generalized increase in plasma membrane permeability and is elicited by ATP4- only.  相似文献   

5.
Calcium signals in cells can arise via release from intracellular stores or influx across the plasma membrane. Recent studies have shed new light on the multi-protein signalling complexes that mediate communication between calcium stores and plasma membrane calcium channels.  相似文献   

6.
The biochemical basis of Ca2+ mobilization after anti-Ig binding to B cell Ag-R has been further characterized by flow cytometric analysis of indo-1-loaded B cells. The ability to distinguish intracellular Ca2+ release from extracellular Ca2+ influx by using an extracellular calcium depletion-repletion approach has allowed us to study the relationship between the mobilization of Ca2+ from these sources. Studies involving manipulation of the Ca2+ gradient across the plasma membrane indicate that a significant portion of the Ca2+ mobilization response is preserved even when the normal inwardly directed Ca2+ gradient is reversed. In the presence of an extracellular calcium concentration ([Ca2+]o) of 10 microM, the response to anti-Ig is not blocked by the organic Ca2+ channel blockers. This response is not reduced by further depletion of [Ca2+]o by EGTA Ca2+-binding buffers. Thus, the Ca2+ response that occurs when [Ca2+]o less than or equal to 10 microM represents intracellular calcium release. Analysis of B cells stimulated with anti-Ig in low Ca2+ medium ([Ca2+]o = less than 10 microM) followed by repletion of [Ca2+]o to 1 to 5 mM reveals that a significant increase in permeability of the plasma membrane to Ca2+ develops in the stimulated cells. The resultant Ca2+ influx is nimodipine (20 microM) sensitive. Both intracellular Ca2+ release and Ca2+ influx are reduced in parallel as the concentration of anti-Ig stimulus is decreased, suggesting that Ca2+ influx may be coupled to the release of intracellular stores. Neomycin blocks anti-Ig-stimulated formation of inositol trisphosphate, which mediates release of Ca2+ from the endoplasmic reticulum. It also blocks the anti-Ig-induced release of intracellular Ca2+ stores as well as Ca2+ influx, indicating that both responses may be dependent upon phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

7.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

8.
Using laser image cytometry and Indo-1 fluorescence, we investigated the intracellular free Ca2+ concentration ([Ca2+]i) of confluent A172 human glioblastoma cells stimulated by the BB homodimer of platelet-derived growth factor (PDGF-BB). The shape of the calcium transients and the delay time between stimulation and the beginning of the transient varied considerably. The percentage of responsive cells, the peak [Ca2+]i and the duration of the response were directly related to PDGF-BB dose, while the delay time was inversely related; the maximal response occurred at a PDGF-BB concentration of 20 ng/ml. Studies with EGTA and inorganic calcium-channel blockers (Ni2+, La3+) showed that the increase of [Ca2+]i resulted from initial release of intracellular stores and subsequent calcium influx across the plasma membrane. Opening of calcium channels in the plasma membrane, monitored directly by studying Mn2+ quenching of Indo-1 fluorescence, was stimulated by PDGF-BB and blocked by La3+; the opening occurred 55 +/- 10 s after the initial increase in [Ca2+]i. Therefore, in these tumor cells, intracellular release always occurs before channel opening in the plasma membrane. Depolarization of cells with high extracellular [K+] did not generally induce calcium transients but did decrease calcium influx. L-type calcium-channel blockers (verapamil, nifedipine, and diltiazem) had little or no effect on the calcium influx induced by PDGF-BB. These results indicate that PDGF-BB induces calcium influx by a mechanism independent of voltage-sensitive calcium channels in A172 human glioblastoma cells.  相似文献   

9.
Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert- butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)- ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.  相似文献   

10.
Gilabert JA  Parekh AB 《The EMBO journal》2000,19(23):6401-6407
In eukaryotic cells, hormones and neurotransmitters that engage the phosphoinositide pathway evoke a biphasic increase in intracellular free Ca(2+) concentration: an initial transient release of Ca(2+) from intracellular stores is followed by a sustained phase of Ca(2+) influx. This influx is generally store dependent. Most attention has focused on the link between the endoplasmic reticulum and store-operated Ca(2+) channels in the plasma membrane. Here, we describe that respiring mitochondria are also essential for the activation of macroscopic store-operated Ca(2+) currents under physiological conditions of weak intracellular Ca(2+) buffering. We further show that Ca(2+)-dependent slow inactivation of Ca(2+) influx, a widespread but poorly understood phenomenon, is regulated by mitochondrial buffering of cytosolic Ca(2+). Thus, by enabling macroscopic store-operated Ca(2+) current to activate, and then by controlling its extent and duration, mitochondria play a crucial role in all stages of store-operated Ca(2+) influx. Store-operated Ca(2+) entry reflects a dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane.  相似文献   

11.
Release of calcium from intracellular stores of rat basophilic leukemia cells was monitored using the fluorescent probe chlortetracycline. The ability of chlortetracycline to indicate release from intracellular calcium stores was initially validated. The decrease of chlortetracycline fluorescence upon antigen-stimulation was not the result of secretion of granule-associated dye or of changes in the properties of the membranes. The chlortetracycline fluorescence signal was not influenced by Ca2+ influx across the plasma membrane. Results obtained from these chlortetracycline fluorescence measurements corresponded well with 45Ca efflux data, an indirect measurement of release of calcium from stores. Chlortetracycline was used to examine the rate of antigen-induced release of calcium from stores, the depletion of intracellular calcium stores by EGTA, and the relationship between the antigen-stimulated release of stored calcium and exocytosis. Chlortetracycline was shown to be a useful qualitative indicator for the release of intracellular calcium with a relatively rapid response time.  相似文献   

12.
The filling state of intracellular Ca2+ stores has been proposed to regulate Ca2+ influx across the plasma membrane in a variety of tissues. To test this hypothesis, we have used three structurally unrelated inhibitors of the Ca(2+)-ATPase of intracellular Ca2+ stores and investigated their effect on Ca2+ homeostasis in HL-60 cells. Without increasing cellular inositol (1,4,5)trisphosphate levels, all three inhibitors (cyclopiazonic acid, thapsigargin, and 2,5-Di-tert-butylhydroquinone) released Ca2+ from intracellular stores, resulting in total depletion of agonist-sensitive Ca2+ stores. The Ca2+ release was relatively slow with a lag time of 5 s and a time to peak of 60 s. After a lag time of approximately 15 s, all three Ca(2+)-ATPase inhibitors activated a pathway for divalent cation influx across the plasma membrane. At a given concentration of an inhibitor, the plasma membrane permeability for divalent cations closely correlated with the extent of depletion of Ca2+ stores. The influx pathway activated by Ca(2+)-ATPase inhibitors conducted Ca2+, Mn2+, Co2+, Zn2+, and Ba2+ and was blocked, at similar concentrations, by La3+, Ni2+, Cd2+, as well as by the imidazole derivate SK&F 96365. The divalent cation influx in response to the chemotactic peptide fMLP had the same characteristics, suggesting a common pathway for Ca2+ entry. Our results support the idea that the filling state of intracellular Ca2+ stores regulates Ca2+ influx in HL-60 cells.  相似文献   

13.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

14.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

15.
An increase in the intracellular calcium ion concentration ([Ca2+]) impacts a diverse range of cell functions, including adhesion, motility, gene expression and proliferation. Elevation of intracellular calcium ion (Ca2+) regulates various cellular events after the stimulation of cells. Initial increase in Ca2+ comes from the endoplasmic reticulum (ER), intracellular storage space. However, the continuous influx of extracellular Ca2+ is required to maintain the increased level of Ca2+ inside cells. Store-operated Ca2+ entry (SOCE) manages this process, and STIM1, a newly discovered molecule, has a unique and essential role in SOCE. STIM1 can sense the exhaustion of Ca2+ in the ER, and activate the SOC channel in the plasma membrane, leading to the continuous influx of extracellular Ca2+. STIM1 senses the status of the intracellular Ca2+ stores via a luminal N-terminal Ca2+-binding EF-hand domain. Dissociation of Ca2+ from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca2+ channels/entry (calcium-release-activated calcium channels/entry). In this review, we summarize the mechanism by which STIM1 regulates SOCE, and also its role in the control of mast cell functions and allergic responses.  相似文献   

16.
Mechanism of store-operated calcium entry   总被引:3,自引:0,他引:3  
Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.  相似文献   

17.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

18.
Voltage-dependent L-type Cav1.3 channels have been detected in satellite cells localized to muscle fibers. It was established that the action of carbachol, which activates nicotinic acetylcholine receptors and causes cell membrane to depolarize, resulted in the activation of these channels. In addition, verapamil and amlodipine, selective L-type calcium channel blockers, suppressed extracellular calcium influx into the cytoplasm. It was noted that in a calcium-free medium, carbachol had no influence on the concentration of calcium in the cytoplasm of satellite cells, whereas adrenaline induced calcium efflux from intracellular stores. In addition, calcium influx into the cytoplasm was not suppressed by verapamil and amlodipine under the action of adrenaline and noradrenalin in a medium with calcium, and an ICI-118551 blocker of β2-adrenoreceptros significantly decreased the increase in the concentration of calcium in the cytoplasm.  相似文献   

19.
We have shown that Hsp20, one of small molecular weight heat shock protein, which is present at a high concentration both in vascular smooth muscle cells and in circulating blood in patient with vascular disease, strongly inhibits platelet aggregation in vitro and ex vivo. To clarify the mechanism, we investigated the effect of Hsp20 on free calcium concentration in human platelet cytoplasm using fura 2. Hsp20 inhibited thrombin-induced calcium influx without affecting calcium release from intracellular calcium stores. The degree of inhibition is well-correlated with that of suppression of thrombin-induced platelet aggregation by this substance. Hsp20 also inhibited the elevation of cytoplasmic free calcium level triggered by collagen, but not that by A-23187. In contrast, Hsp28, another type of small molecular weight Hsp, failed to affect the cytoplasmic free calcium level. These findings suggest that Hsp20 inhibits the receptor-mediated calcium influx of platelets without affecting calcium release from intracellular calcium stores, leading to its anti-platelet activity.  相似文献   

20.
Bolsover SR 《Cell calcium》2005,37(5):395-402
Growth cones, the motile structures at the tips of advancing axons and dendrites, respond to a wide range of cues by either turning towards or away from the cue. Cytosolic calcium signals appear to mediate a large fraction of both types of response. Calcium signals can be generated by influx through plasma membrane channels or by release from intracellular stores. While neurotransmitters can elicit calcium influx through ionotropic receptors, other chemical cues open plasma membrane voltage gated calcium channels by a mechanism other than a change of membrane voltage. In general attractive cues generate spatially and temporally restricted calcium increases that are difficult to detect using conventional indicators. One target for these calcium signals is calmodulin dependent protein kinase II. Repulsive cues generate spatially and temporally more diffuse calcium increases that can be more readily detected using fluorescent indicators. One target for these is the phosphatase calcineurin, which may act by dephosphorylating GAP43 and allowing the latter to cap actin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号