首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin-binding protein C (MyBP-C) is an ∼ 130-kDa rod-shaped protein of the thick (myosin containing) filaments of vertebrate striated muscle. It is composed of 10 or 11 globular 10-kDa domains from the immunoglobulin and fibronectin type III families and an additional MyBP-C-specific motif. The cardiac isoform cMyBP-C plays a key role in the phosphorylation-dependent enhancement of cardiac function that occurs upon β-adrenergic stimulation, and mutations in MyBP-C cause skeletal muscle and heart diseases. In addition to binding to myosin, MyBP-C can also bind to actin via its N-terminal end, potentially modulating contraction in a novel way via this thick-thin filament bridge. To understand the structural basis of actin binding, we have used negative stain electron microscopy and three-dimensional reconstruction to study the structure of F-actin decorated with bacterially expressed N-terminal cMyBP-C fragments. Clear decoration was obtained under a variety of salt conditions varying from 25 to 180 mM KCl concentration. Three-dimensional helical reconstructions, carried out at the 180-mM KCl level to minimize nonspecific binding, showed MyBP-C density over a broad portion of the periphery of subdomain 1 of actin and extending tangentially from its surface in the direction of actin's pointed end. Molecular fitting with an atomic structure of a MyBP-C Ig domain suggested that most of the N-terminal domains may be well ordered on actin. The location of binding was such that it could modulate tropomyosin position and would interfere with myosin head binding to actin.  相似文献   

2.
cMyBP-C [cardiac (MyBP-C) myosin-binding protein-C)] is a sarcomeric protein involved both in thick filament structure and in the regulation of contractility. It is composed of eight IgI-like and three fibronectin-3-like domains (termed C0-C10). Mutations in the gene encoding cMyBP-C are a principal cause of HCM (hypertrophic cardiomyopathy). cMyBP-C binds to the LMM (light meromyosin) portion of the myosin rod via its C-terminal domain, C10. We investigated this interaction in detail to determine whether HCM mutations in beta myosin heavy chain located within the LMM portion alter the binding of cMyBP-C, and to define the precise region of LMM that binds C10 to aid in developing models of the arrangement of MyBP-C on the thick filament. In co-sedimentation experiments recombinant C10 bound full-length LMM with a K(d) of 3.52 microM and at a stoichiometry of 1.14 C10 per LMM. C10 was also shown to bind with similar affinity to LMM containing either the HCM mutations A1379T or S1776G, suggesting that these HCM mutations do not perturb C10 binding. Using a range of N-terminally truncated LMM fragments, the cMyBP-C-binding site on LMM was shown to lie between residues 1554 and 1581. Since it had been reported previously that acidic residues on myosin mediate the C10 interaction, three clusters of acidic amino acids (Glu1554/Glu1555, Glu1571/Glu1573 and Glu1578/Asp1580/Glu1581/Glu1582) were mutated in full-length LMM and the proteins tested for C10 binding. No effect of these mutations on C10 binding was however detected. We interpret our results with respect to the localization of the proposed trimeric collar on the thick filament.  相似文献   

3.
Cardiac myosin-binding protein-C (cMyBP-C) is a thick-filament-associated protein that performs regulatory and structural roles within cardiac sarcomeres. It is a member of the immunoglobulin (Ig) superfamily of proteins consisting of eight Ig- and three fibronectin (FNIII)-like domains, along with a unique regulatory sequence referred to as the M-domain, whose structure is unknown. Domains near the C-terminus of cMyBP-C bind tightly to myosin and mediate the association of cMyBP-C with thick (myosin-containing) filaments, whereas N-terminal domains, including the regulatory M-domain, bind reversibly to myosin S2 and/or actin. The ability of MyBP-C to bind to both myosin and actin raises the possibility that cMyBP-C cross-links myosin molecules within the thick filament and/or cross-links myosin and thin (actin-containing) filaments together. In either scenario, cMyBP-C could be under mechanical strain. However, the physical properties of cMyBP-C and its behavior under load are completely unknown. Here, we investigated the mechanical properties of recombinant baculovirus-expressed cMyBP-C using atomic force microscopy to assess the stability of individual cMyBP-C molecules in response to stretch. Force-extension curves showed the presence of long extensible segment(s) that became stretched before the unfolding of individual Ig and FNIII domains, which were evident as sawtooth peaks in force spectra. The forces required to unfold the Ig/FNIII domains at a stretch rate of 500 nm/s increased monotonically from ∼30 to ∼150 pN, suggesting a mechanical hierarchy among the different Ig/FNIII domains. Additional experiments using smaller recombinant proteins showed that the regulatory M-domain lacks significant secondary or tertiary structure and is likely an intrinsically disordered region of cMyBP-C. Together, these data indicate that cMyBP-C exhibits complex mechanical behavior under load and contains multiple domains with distinct mechanical properties.  相似文献   

4.
Myosin-binding protein C (MyBP-C) is thought to play structural and/or regulatory role in striated muscles. The cardiac isoform of MyBP-C is one of the disease genes associated with familial hypertrophic cardiomyopathy and most of the mutations produce COOH truncated proteins. In order to determine the consequences of these mutations on myosin filament organization, we have characterized the effect of a 52-kDa NH2-terminal peptide of human cardiac MyBP-C on the alpha-myosin heavy chain (alpha-MyHC) filament organization. This peptide lacks the COOH-terminal MyHC-binding site and retains the two MyHC-binding domains located in the N-terminal part of MyBP-C. For this characterization, cDNA constructs (rat alpha-MyHC, full-length and truncated human cardiac MyBP-C) were transiently expressed singly or in pairwise combination in COS cells. In conformity with previous works performed on the skeletal isoform of MyBP-C, we observed that full-length cardiac MyBP-C organizes the MyHC into dense structures of uniform width. While the truncated protein is stable and can interact with MyHC in COS cells, it does not result in the same organization of sarcomeric MyHC that is seen with the full-length MyBP-C. These results suggest that the presence of truncated cardiac MyBP-C could, at least partly, disorganize the sarcomeric structure in patients with familial hypertrophic cardiomyopathy.  相似文献   

5.
Modulatory role of whole cardiac myosin binding protein-C (сMyBP-C) in regulation of cardiac muscle contractility was studied in the in vitro motility assay with rabbit cardiac myosin as a motor protein. The effects of cMyBP-C on the interaction of cardiac myosin with regulated thin filament were tested in both in vitro motility and ATPase assays. We demonstrate that the addition of cMyBP-C increases calcium regulated Mg-ATPase activity of cardiac myosin at submaximal calcium. The Hill coefficient for ‘pCa-velocity’ relation in the in vitro motility assay decreased and the calcium sensitivity increased when сMyBP-C was added. Results of our experiments testifies in favor of the hypothesis that сMyBP-C slows down cross-bridge kinetics when binding to actin.  相似文献   

6.
Myosin binding protein-C (MyBP-C) is a thick-filament protein whose precise function within the sarcomere is not known. However, recent evidence from cMyBP-C knock-out mice that lack MyBP-C in the heart suggest that cMyBP-C normally slows cross-bridge cycling rates and reduces myocyte power output. To investigate possible mechanisms by which cMyBP-C limits cross-bridge cycling kinetics we assessed effects of recombinant N-terminal domains of MyBP-C on the ability of heavy meromyosin (HMM) to support movement of actin filaments using in vitro motility assays. Here we show that N-terminal domains of cMyBP-C containing the MyBP-C "motif," a sequence of approximately 110 amino acids, which is conserved across all MyBP-C isoforms, reduced actin filament velocity under conditions where filaments are maximally activated (i.e. either in the absence of thin filament regulatory proteins or in the presence of troponin and tropomyosin and high [Ca2+]). By contrast, under conditions where thin filament sliding speed is submaximal (i.e. in the presence of troponin and tropomyosin and low [Ca2+]), proteins containing the motif increased filament speed. Recombinant N-terminal proteins also bound to F-actin and inhibited acto-HMM ATPase rates in solution. The results suggest that N-terminal domains of MyBP-C slow cross-bridge cycling kinetics by reducing rates of cross-bridge detachment.  相似文献   

7.
In contrast to skeletal muscle isoforms of myosin binding protein C (MyBP-C), the cardiac isoform has 11 rather than 10 fibronectin or Ig modules (modules are identified as C0 to C10, NH2 to COOH terminus), 3 phosphorylation sites between modules C1 and C2, and 28 additional amino acids rich in proline in C5. Phosphorylation between C1 and C2 increases maximum Ca-activated force (Fmax), alters thick filament structure, and increases the probability of myosin heads on the thick filament binding to actin on the thin filament. Unphosphorylated C1C2 fragment binds to myosin, but phosphorylation inhibits the binding. MyBP-C also binds to actin. Using two types of immunoprecipitation and cosedimentation, we show that fragments of MyBP-C containing C0 bind to actin. In low concentrations C0-containing fragments bind to skinned fibers when the NH2 terminus of endogenous MyBP-C is bound to myosin, but not when MyBP-C is bound to actin. C1C2 fragments bind to skinned fibers when endogenous MyBP-C is bound to actin but not to myosin. Disruption of interactions of endogenous C0 with a high concentration of added C0C2 fragments produces the same effect on contractility as extraction of MyBP-C, namely decrease in Fmax and increase in Ca sensitivity. These results suggest that cardiac contractility can be regulated by shifting the binding of the NH2 terminus of MyBP-C between actin and myosin. This mechanism may have an effect on diastolic filling of the heart.  相似文献   

8.
Myosin-binding protein-C (MyBP-C) is a thick filament-associated protein that binds tightly to myosin. Given that cMyBP-C may act to modulate cooperative activation of the thin filament by constraining the availability of myosin cross-bridges for binding to actin, we investigated the role of MyBP-C in the regulation of cardiac muscle contraction. We assessed the Ca(2+) sensitivity of force (pCa(50)) and the activation dependence of the rate of force redevelopment (k(tr)) in skinned myocardium isolated from wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)) mice. Mechanical measurements were performed at 22 degrees C in the absence and presence of a strong-binding, nonforce-generating analog of myosin subfragment-1 (NEM-S1). In the absence of NEM-S1, maximal force and k(tr) and the pCa(50) of isometric force did not differ between WT and cMyBP-C(-/-) myocardium; however, ablation of cMyBP-C-accelerated k(tr) at each submaximal force. Treatment of WT and cMyBP-C(-/-) myocardium with 3 muM NEM-S1 elicited similar increases in pCa(50,) but the effects of NEM-S1 to increase k(tr) at submaximal forces and thereby markedly reduce the activation dependence of k(tr) occurred to a greater degree in cMyBP-C(-/-) myocardium. Together, these results support the idea that cMyBP-C normally acts to constrain the interaction between myosin and actin, which in turn limits steady-state force development and the kinetics of cross-bridge interaction.  相似文献   

9.
Mutations in the thick filament associated protein cardiac myosin binding protein-C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C is thought to play both a structural and a regulatory role in the contraction of cardiac muscle, detailed information about the role of this protein in stability of the thick filament and maintenance of the ordered helical arrangement of the myosin cross-bridges is limited. To address these questions, the structure of myosin thick filaments isolated from the hearts of wild-type mice containing cMyBP-C (cMyBP-C+/+) were compared to those of cMyBP-C knockout mice lacking this protein (cMyBp-C−/−). The filaments from the knockout mice hearts lacking cMyBP-C are stable and similar in length and appearance to filaments from the wild-type mice hearts containing cMyBP-C. Both wild-type and many of the cMyBP-C−/− filaments display a distinct 43 nm periodicity. Fourier transforms of electron microscope images typically show helical layer lines to the sixth layer line, confirming the well-ordered arrangement of the cross-bridges in both sets of filaments. However, the “forbidden” meridional reflections, thought to derive from a perturbation from helical symmetry in the wild-type filament, are weaker or absent in the transforms of the cMyBP-C−/− myocardial thick filaments. In addition, the cross-bridge array in the absence of cMyBP-C appears more easily disordered.  相似文献   

10.
Myosin binding protein-C (cMyBP-C) is a thick filament accessory protein, which in cardiac muscle functions to regulate the kinetics of cross-bridge interaction with actin; however, the underlying mechanism is not yet understood. To explore the structural basis for cMyBP-C function, we used synchrotron low-angle X-ray diffraction to measure interfilament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned myocardial preparations isolated from wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)). In relaxed myocardium, ablation of cMyBP-C appeared to result in radial displacement of cross-bridges away from the thick filaments, as there was a significant increase ( approximately 30%) in the I(11)/I(10) ratio for cMyBP-C(-/-) (0.37+/-0.03) myocardium as compared to WT (0.28+/-0.01). While lattice spacing tended to be greater in cMyBP-C(-/-) myocardium (44.18+/-0.68 nm) when compared to WT (42.95+/-0.43 nm), the difference was not statistically significant. Furthermore, liquid-like disorder in the myofilament lattice was significantly greater ( approximately 40% greater) in cMyBP-C(-/-) myocardium as compared to WT. These results are consistent with our working hypothesis that cMyBP-C normally acts to tether myosin cross-bridges nearer to the thick filament backbone, thereby reducing the likelihood of cross-bridge binding to actin and limiting cooperative activation of the thin filament.  相似文献   

11.
Myosin binding protein C (MyBP-C) is a thick-filament protein that limits cross-bridge cycling rates and reduces myocyte power output. To investigate mechanisms by which MyBP-C affects contraction, we assessed effects of recombinant N-terminal domains of cardiac MyBP-C (cMyBP-C) on contractile properties of permeabilized rat cardiac trabeculae. Here, we show that N-terminal fragments of cMyBP-C that contained the first three immunoglobulin domains of cMyBP-C (i.e., C0, C1, and C2) plus the unique linker sequence termed the MyBP-C “motif” or “m-domain” increased Ca2+ sensitivity of tension and increased rates of tension redevelopment (i.e., ktr) at submaximal levels of Ca2+. At concentrations ≥20 μM, recombinant proteins also activated force in the absence of Ca2+ and inhibited maximum Ca2+-activated force. Recombinant proteins that lacked the combination of C1 and the motif did not affect contractile properties. These results suggest that the C1 domain plus the motif constitute a functional unit of MyBP-C that can activate the thin filament.  相似文献   

12.
Although absence or abnormality of cardiac myosin binding protein C (cMyBP-C) produces serious structural and functional abnormalities of the heart, function of the protein itself is not clearly understood, and the cause of the abnormalities, unidentified. Here we report that a major function of cMyBP-C may be regulating the stability of the myosin-containing contractile filaments through phosphorylation of cMyBP-C. Antibodies were raised against three different regions of cMyBP-C to detect changes in structure within the molecule, and loss of myosin heavy chain was used to monitor degradation of the thick filament. Results from Western blotting and polyacrylamide gel electrophoresis indicate that cMyBP-C can exist in two different forms that produce, respectively, stable and unstable thick filaments. The stable form has well-ordered myosin heads and requires phosphorylation of the cMyBP-C. The unstable form has disordered myosin heads. In tissue with intact cardiac cells, the unstable unphosphorylated cMyBP-C is more easily proteolyzed, causing thick filaments first to release cMyBP-C and/or its proteolytic peptides and then myosin. Filaments deficient in cMyBP-C are fragmented by shear force well tolerated by the stable form. We hypothesize that modulation of filament stability can be coupled at the molecular level with the strength of contraction by the sensitivity of each to the concentration of calcium ions.  相似文献   

13.
C-protein is a major component of skeletal and cardiac muscle thick filaments. Mutations in the gene encoding cardiac C-protein [cardiac myosin binding protein-C (cMyBP-C)] are one of the principal causes of hypertrophic cardiomyopathy. cMyBP-C is a string of globular domains including eight immunoglobulin-like and three fibronectin-like domains termed C0-C10. It binds to myosin and titin, and probably to actin, and may have both a structural and a regulatory role in muscle function. To help to understand the pathology of the known mutations, we have solved the structure of the immunoglobulin-like C1 domain of MyBP-C by X-ray crystallography to a resolution of 1.55 Å. Mutations associated with hypertrophic cardiomyopathy are clustered at one end towards the C-terminus, close to the important C1C2 linker, where they alter the structural integrity of this region and its interactions.  相似文献   

14.
Human hearts with reduced or mutant myosin binding protein C (MyBP-C) undergo hypertrophy and dilation, suggesting that reduction or alteration of MyBP-C interferes with normal contraction. Extraction of 60-70% of MyBP-C over 1 h from a mechanically disrupted cardiac myocyte has been shown to increase Ca sensitivity but does not appear to impair development of maximum Ca-activated force (Fmax). To determine whether loss of MyBP-C over a longer period of time will decrease force development in a reversible manner, MyBP-C has been extracted from chemically skinned rat cardiac trabeculae for 1-4 h, and force production, Ca sensitivity, and thick filament structure were measured. Although extraction of MyBP-C for 1 h did not alter Fmax, after 4 h, myosin heads became disordered and Fmax decreased. At this point, incubation of the trabeculae with rat cardiac MyBP-C in a relaxing solution reversed the decline in Fmax and most of the change in order of myosin heads. Extraction of MyBP-C appears to produce a change in the orientation of myosin heads that is associated with a decreased ability of the contractile system to develop force.  相似文献   

15.
Myosin binding protein C (MyBP-C) is a component of the thick filament of striated muscle. The importance of this protein is revealed by recent evidence that mutations in the cardiac gene are a major cause of familial hypertrophic cardiomyopathy. Here we investigate the distribution of MyBP-C in the A-bands of cardiac and skeletal muscles and compare this to the A-band structure in cardiac muscle of MyBP-C-deficient mice. We have used a novel averaging technique to obtain the axial density distribution of A-bands in electron micrographs of well-preserved specimens. We show that cardiac and skeletal A-bands are very similar, with a length of 1.58 ± 0.01 μm. In normal cardiac and skeletal muscle, the distributions are very similar, showing clearly the series of 11 prominent accessory protein stripes in each half of the A-band spaced axially at 43-nm intervals and starting at the edge of the bare zone. We show by antibody labelling that in cardiac muscle the distal nine stripes are the location of MyBP-C. These stripes are considerably suppressed in the knockout mouse hearts as expected. Myosin heads on the surface of the thick filament in relaxed muscle are thought to be arranged in a three-stranded quasi-helix with a mean 14.3-nm axial cross bridge spacing and a 43 nm helix repeat. Extra “forbidden” meridional reflections, at orders of 43 nm, in X-ray diffraction patterns of muscle have been interpreted as due to an axial perturbation of some levels of myosin heads. However, in the MyBP-C-deficient hearts these extra meridional reflections are weak or absent, suggesting that they are due to MyBP-C itself or to MyBP-C in combination with a head perturbation brought about by the presence of MyBP-C.  相似文献   

16.
Mutations in cardiac myosin binding protein C (cMyBP-C) are prevalent causes of hypertrophic cardiomyopathy (HCM). Although HCM-causing truncation mutations in cMyBP-C are well studied, the growing number of disease-related cMyBP-C missense mutations remain poorly understood. Our objective was to define the primary contractile effect and molecular disease mechanisms of the prevalent cMyBP-C E258K HCM-causing mutation in nonremodeled murine engineered cardiac tissue (mECT). Wild-type and human E258K cMyBP-C were expressed in mECT lacking endogenous mouse cMyBP-C through adenoviral-mediated gene transfer. Expression of E258K cMyBP-C did not affect cardiac cell survival and was appropriately incorporated into the cardiac sarcomere. Functionally, expression of E258K cMyBP-C caused accelerated contractile kinetics and severely compromised twitch force amplitude in mECT. Yeast two-hybrid analysis revealed that E258K cMyBP-C abolished interaction between the N terminal of cMyBP-C and myosin heavy chain sub-fragment 2 (S2). Furthermore, this mutation increased the affinity between the N terminal of cMyBP-C and actin. Assessment of phosphorylation of three serine residues in cMyBP-C showed that aberrant phosphorylation of cMyBP-C is unlikely to be responsible for altering these interactions. We show that the E258K mutation in cMyBP-C abolishes interaction between N-terminal cMyBP-C and myosin S2 by directly disrupting the cMyBP-C–S2 interface, independent of cMyBP-C phosphorylation. Similar to cMyBP-C ablation or phosphorylation, abolition of this inhibitory interaction accelerates contractile kinetics. Additionally, the E258K mutation impaired force production of mECT, which suggests that in addition to the loss of physiological function, this mutation disrupts contractility possibly by tethering the thick and thin filament or acting as an internal load.  相似文献   

17.
M Gautel  O Zuffardi  A Freiburg    S Labeit 《The EMBO journal》1995,14(9):1952-1960
Cardiac myosin binding protein-C (cardiac MyBP-C, cardiac C protein) belongs to a family of proteins implicated in both regulatory and structural functions of striated muscle. For the cardiac isoform, regulatory phosphorylation in vivo by cAMP-dependent protein kinase (PKA) upon adrenergic stimulation is linked to modulation of cardiac contraction. The sequence of human cardiac MyBP-C now reveals regulatory motifs specific for this isoform. Site-directed mutagenesis identifies a LAGGGRRIS loop in the N-terminal region of cardiac MyBP-C as the key substrate site for phosphorylation by both PKA and a calmodulin-dependent protein kinase associated with the native protein. Phosphorylation of two further sites by PKA is induced by phosphorylation of this isoform-specific site. This phosphorylation switch can be mimicked by aspartic acid instead of phosphoserine. Cardiac MyBP-C is therefore specifically equipped with sensors for adrenergic regulation of cardiac contraction, possibly implicating cardiac MyBP-C in cardiac disease. The gene coding for cardiac MyBP-C has been assigned to the chromosomal location 11p11.2 in humans, and is therefore in a region of physical linkage to subsets of familial hypertrophic cardiomyopathy (FHC). This makes cardiac MyBP-C a candidate gene for chromosome 11-associated FHC.  相似文献   

18.
Myosin-binding protein C (MyBP-C) is a multidomain protein present in the thick filaments of striated muscles and is involved in both sarcomere formation and contraction regulation. The latter function is believed to be located at the N terminus, which is close to the motor domain of myosin. The cardiac isoform of MyBP-C is linked to hypertrophic cardiomyopathy. Here, we use NMR spectroscopy and biophysical and biochemical assays to study the three-dimensional structure and interactions of the cardiac-specific Ig-like domain C0, a part of cardiac MyBP-C of which little is known. The structure confirmed that C0 is a member of the IgI class of proteins, showing many of the characteristic features of this fold. Moreover, we identify a novel interaction between C0 and the regulatory light chain of myosin, thus placing the N terminus of the protein in proximity to the motor domain of myosin. This novel interaction is disrupted by several cardiomyopathy-linked mutations in the MYBPC3 gene. These results provide new insights into how cardiac MyBP-C incorporates in the sarcomere and how it can contribute to the regulation of muscle contraction.  相似文献   

19.
Myosin-binding protein-C (MyBP-C) is a component of all striated-muscle sarcomeres, with a well established structural role and a possible function for force regulation. Multiple mutations within the gene for cardiac MyBP-C, one of three known isoforms, have been linked to familial hypertrophic cardiomyopathy. Here we generated a knock-in mouse model that carries N-terminal-shortened cardiac MyBP-C. The mutant protein was designed to have a similar size as the skeletal MyBP-C isoforms, whereas known myosin and titin binding sites as well as the phosphorylatable MyBP-C motif were not altered. We have shown that mutant cardiac MyBP-C is readily incorporated into the sarcomeres of both heterozygous and homozygous animals and can still be phosphorylated by cAMP-dependent protein kinase. Although histological characterization of wild-type and mutant hearts did not reveal obvious differences in phenotype, left ventricular fibers from homozygous mutant mice exhibited an increased Ca(2+) sensitivity of force development, particularly at lower Ca(2+) concentrations, whereas maximal active force levels remained unchanged. The results allow us to propose a model of how cMyBP-C may affect myosin-head mobility and to rationalize why N-terminal mutations of the protein in some cases of familial hypertrophic cardiomyopathy could lead to a hypercontractile state.  相似文献   

20.
Myocardial stunning is the transient cardiac dysfunction that follows brief episodes of ischemia and reperfusion without associated myocardial necrosis. Currently, there is limited knowledge about its cellular and biochemical mechanisms. In order to better understand the underlying mechanisms of contractile dysfunction associated with the stunning, comprehensive proteomic studies using 2-D DIGE were performed using a regional stunning model in canine heart. Cardiac myosin binding protein C (cMyBP-C), a regulatory myofilament protein associated with the thick filament, and nebulette, a thin filament associated protein, were differentially expressed. Phosphoprotein specific staining indicated both protein changes were due to phosphorylation. Subsequent phosphorylation mapping of canine cMyBP-C using IMAC and MS/MS identified five phosphorylation sites, including three novel sites. In order to further evaluate this finding in a different model, cMyBP-C phosphorylation was examined in a rat model of global stunning. In the rat model, stunning was associated with increased phosphorylation of cMyBP-C at a critical calcium/calmodulin-dependent kinase II site, and the increased phosphorylation was largely inhibited when stunning was prevented by either ischemic preconditioning or reperfusion in the presence of low-calcium buffer. These data indicate cMyBP-C phosphorylation plays an important role in myocardial stunning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号