共查询到20条相似文献,搜索用时 15 毫秒
1.
Borok Z Liebler JM Lubman RL Foster MJ Zhou B Li X Zabski SM Kim KJ Crandall ED 《American journal of physiology. Lung cellular and molecular physiology》2002,282(4):L599-L608
Despite a presumptive role for type I (AT1) cells in alveolar epithelial transport, specific Na transporters have not previously been localized to these cells. To evaluate expression of Na transporters in AT1 cells, double labeling immunofluorescence microscopy was utilized in whole lung and in cytocentrifuged preparations of partially purified alveolar epithelial cells (AEC). Expression of Na pump subunit isoforms and the alpha-subunit of the rat (r) epithelial Na channel (alpha-ENaC) was evaluated in isolated AT1 cells identified by their immunoreactivity with AT1 cell-specific antibody markers (VIIIB2 and/or anti-aquaporin-5) and lack of reactivity with antibodies specific for AT2 cells (anti-surfactant protein A) or leukocytes (anti-leukocyte common antigen). Expression of the Na pump alpha(1)-subunit in AEC was assessed in situ. Na pump subunit isoform and alpha-rENaC expression was also evaluated by RT-PCR in highly purified (approximately 95%) AT1 cell preparations. Labeling of isolated AT1 cells with anti-alpha(1) and anti-beta(1) Na pump subunit and anti-alpha-rENaC antibodies was detected, while reactivity with anti-alpha(2) Na pump subunit antibody was absent. AT1 cells in situ were reactive with anti-alpha(1) Na pump subunit antibody. Na pump alpha(1)- and beta(1)- (but not alpha(2)-) subunits and alpha-rENaC were detected in highly purified AT1 cells by RT-PCR. These data demonstrate that AT1 cells express Na pump and Na channel proteins, supporting a role for AT1 cells in active transalveolar epithelial Na transport. 相似文献
2.
Chen Z Jin N Narasaraju T Chen J McFarland LR Scott M Liu L 《Biochemical and biophysical research communications》2004,319(3):774-780
Alveolar epithelial type I and type II cells (AEC I and II) are closely aligned in alveolar surface. There is much interest in the precise identification of AEC I and II in order to separate and evaluate functional and other properties of these two cells. This study aims to identify specific AEC I and AEC II cell markers by DNA microarray using the in vitro trans-differentiation of AEC II into AEC I-like cells as a model. Quantitative real-time PCR confirmed five AEC I genes: fibroblast growth factor receptor-activating protein 1, aquaporin 5, purinergic receptor P2X 7 (P2X7), interferon-induced protein, and Bcl2-associated protein, and one AEC II gene: gamma-aminobutyric acid receptor pi subunit (GABRP). Immunostaining on cultured cells and rat lung tissue indicated that GABRP and P2X7 proteins were specifically expressed in AEC II and AEC I, respectively. In situ hybridization of rat lung tissue confirmed the localization of GABRP mRNA in type II cells. P2X7 and GABRP identified in this study could be used as potential AEC I and AEC II markers for studying lung epithelial cell biology and monitoring lung injury. 相似文献
3.
4.
5.
Binding of Griffonia simplicifolia I lectin to rat pulmonary alveolar macrophages and its use in purifying type II alveolar epithelial cells 总被引:6,自引:0,他引:6
R H Simon J P McCoy A E Chu P D Dehart I J Goldstein 《Biochimica et biophysica acta》1986,885(1):34-42
We report that the isolectin Griffonia simplicifolia I-B4 isolated from G. simplicifolia seeds binds to rat alveolar macrophages present in frozen sections of lung tissue or bronchoalveolar lavage fluid. G. simplicifolia I-B4 does not bind to alveolar epithelial cells. We established that G. simplicifolia I-B4 binds to the macrophages via interaction with terminal alpha-D-galactopyranosyl residues present on these cells. This was substantiated by demonstrating that binding is inhibited either by the haptenic sugar alpha-D-galactopyranoside or by treating the cells with coffee bean alpha-galactosidase. Because murine laminin is known to contain terminal alpha-D-galactopyranosyl end-groups, and because we found that an anti-laminin antiserum binds to rat alveolar macrophages, we suspect that G. simplicifolia I-B4 may be binding to laminin present on the macrophages. To isolate alveolar type II epithelial cells from rat lungs, we developed a method that utilizes the lectin G. simplicifolia I. When proteinase-derived suspensions of pulmonary cells are incubated with G. simplicifolia I, the macrophages agglutinate and can be removed by filtration through nylon mesh. After incubating the resulting cellular suspension in tissue culture, the adherent cells are 94 +/- 2% (S.D.) type II cells. When compared to cells isolated by repeated differential adherence, the lectin-prepared type II cells have similar morphology and staining characteristics, form domes in monolayers and incorporate similar amounts of palmitate into disaturated phosphatidylcholine. We believe that the procedure outlined in this report provides a simple and effective method to isolate type II alveolar epithelial cells from rat lungs. 相似文献
6.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1979,572(3):502-509
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and Fα by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and Fα and smaller quantities of 6-keto-prosta-glandin F1α and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1a) along with smaller quantities of prostaglandin E2 and F2α. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E2 had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures. 相似文献
7.
Jacob N. Finkelstein William M. Maniscalco Donald L. Shapiro 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(3):398-404
The biochemical characteristics of type II alveolar epithelial cells dissociated from adult rabbit lung by instillation of low concentrations of an elastase trypsin mixture are reported. Cells studied immediately (within 4 h) after isolation were found to incorporate the radioactively labelled precursors [U-14C]glucose, [methyl-3H]choline and [3H]palmitate into cellular phosphatidylcholine at rates 2–10-fold higher than previously reported for cells not subject to short-term cell culture. Secretion of phosphatidylcholine was stimulated by beta-adrenergic agonists. Measurement of specific activities of enzymes of phospholipid biosynthesis in subcellular fractions of isolated lung cells showed a significant enrichment of acyl coenzyme A-lysophosphatidylcholine acyltransferase, an enzyme believed to be involved in pulmonary surfactant phosphatidylcholine remodeling, in the endoplasmic reticulum of type II cells. These observations support the utility of freshly isolated type II cells as a model system for the study of the functions of the alveolar epithelium. 相似文献
8.
Johnson MD 《Molecular bioSystems》2007,3(3):178-186
This highlight article summarizes the current published literature of ion channels and ion transport in type I cells. Twenty years ago, the general theory of ion and fluid transport in the lung was that the alveolar type II cells, known to contain ion channels, governed ion transport and that the type I cells, believed to be incapable of ion transport, only allowed passive movement of water. Unable to reconcile the extraordinarily large surface area covered by type I cells (95% of the internal surface area of the lung) with such minimal biological activity, investigators set out to demonstrate that type I cells were capable of ion transport and played a role in regulating lung fluid balance. Various methods were employed to show that type I cells contained ENaC (HSC and NSC channels), CNG and K(+) channels, and CFTR, further necessitating a revision of the current theories of ion and fluid transport in the lung. 相似文献
9.
Brown S. E.; Kim K. J.; Goodman B. E.; Wells J. R.; Crandall E. D. 《Journal of applied physiology》1985,59(5):1616-1622
Type II alveolar epithelial cell monolayers have been shown to actively transport sodium (Na+). Coupling to amino acid uptake could be an important mechanism for Na+ entry into these cells. This study demonstrates the presence of such a coupled cotransport mechanism in the plasma membrane of isolated type II cells by use of the nonmetabolizable amino acid analogue alpha-methylaminoisobutyric acid (MeAIB). Transport of MeAIB in 137 mM Na+ is saturable, with the uptake constant (Vmax) equaling 13.9 pmol X mg prot-1 X s-1 and the Michaelis-Menten constant (Km) equaling 0.13 mM. In the presence of Na+, MeAIB is accumulated against a concentration gradient. MeAIB uptake in the absence of Na+ is linear with MeAIB concentration, as expected for simple diffusion. The Hill coefficient for Na+-MeAIB cotransport is 1.11, suggesting a 1:1 stoichiometry. Proline inhibits Na+-MeAIB cotransport, with Ki equaling 0.5 mM. These findings suggest that Na+-amino acid cotransport may be an important pathway for Na+ (and/or amino acid) uptake into type II alveolar epithelial cells. 相似文献
10.
Prostaglandin production was studied in fetal and adult type II alveolar epithelial cells. Two culture systems were employed, fetal rat lung organotypic cultures consisting of fetal type II cells and monolayer cultures of adult lung type II cells. Dexamethasone, thyroxine, prolactin and insulin, hormones which influence lung development, each reduced the production of prostaglandin E and F alpha by the organotypic cultures. The fetal cultures produced relatively large quantities of prostaglandin E and F alpha and smaller quantities of 6-keto-prostaglandin F1 alpha and thromboxane B2. However, prostaglandin E2 production was predominant. In contrast, the adult type II cells in monolayer culture produced predominantly prostacyclin (6-keto-prostaglandin F1 alpha) along with smaller quantities of prostaglandin E2 and F2 alpha. The type II cells were relatively unresponsive to prostaglandins. Exogenously added prostaglandin E, had no effect on cell growth, and only a minimal effect on cyclic AMP levels in the monolayer cultures. 相似文献
11.
Bhaskaran M Chen H Chen Z Liu L 《Biochemical and biophysical research communications》2005,333(4):1348-1352
Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin alpha- and beta-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry revealed that hemoglobin protein was specifically localized in type II cells of a lung cell mixture and rat lung tissue. The endogenous synthesis of hemoglobin in alveolar epithelial cells suggests that hemoglobin may have unidentified functions other than oxygen transport in the lung. 相似文献
12.
Flecknoe S Harding R Maritz G Hooper SB 《American journal of physiology. Lung cellular and molecular physiology》2000,278(6):L1180-L1185
Type I and type II alveolar epithelial cells (AECs) are derived from the same progenitor cell, but little is known about the factors that regulate their differentiation into separate phenotypes. An alteration in lung expansion alters the proportion type II AECs in the fetal lung, indicating that this may be a regulatory factor. Our aim was to quantify the changes in the proportion of type I and type II AECs caused by increased fetal lung expansion and to provide evidence for transdifferentiation of type II into type I cells. Lung tissue samples were collected from ovine fetuses exposed to increased lung expansion induced by 2, 4, or 10 days of tracheal obstruction (TO). The identities and proportions of AEC types were determined with electron microscopy. The proportion of type II cells was reduced from 28.5 +/- 2.2% in control fetuses to 9.4 +/- 2.3% at 2 days of TO and then to 1.9 +/- 0.8% at 10 days. The proportion of type I AECs was not altered at 2 days of TO (63.1 +/- 2.3%) compared with that of control cells (64.8 +/- 0.5%) but was markedly elevated (to 89.4 +/- 0.9%) at 10 days of TO. The proportion of an intermediate AEC type, which displayed characteristics of both type I and type II cells, increased from 5.7 +/- 1.3% in control fetuses to 23.8 +/- 5.1% by 2 days of TO and was similar to control values at 10 days of TO (7.7 +/- 0.9%). Our data show that increases in fetal lung expansion cause time-dependent changes in the proportion of AEC types, including a transient increase in an intermediate cell type. These data provide the first evidence to support the hypothesis that increases in fetal lung expansion induce differentiation of type II into type I AECs via an intermediate cell type. 相似文献
13.
Bhaskaran M Kolliputi N Wang Y Gou D Chintagari NR Liu L 《The Journal of biological chemistry》2007,282(6):3968-3976
Type II alveolar epithelial cells (AEC II) proliferate and transdifferentiate into type I alveolar epithelial cells (AEC I) when the normal AEC I population is damaged in the lung alveoli. We hypothesized that signaling by transforming growth factor beta1 (TGF beta1), through its downstream Smad proteins, is involved in keeping AEC II quiescent in normal cells and its altered signaling may be involved in the trans-differentiation of AEC II to AEC I. In the normal lung, TGF beta1 and Smad4 were highly expressed in AEC II. Using an in vitro cell culture model, we demonstrated that the trans-differentiation of AEC II into AEC I-like cells began with a proliferative phase, followed by a differentiation phase. The expression of TGF beta1, Smad2, and Samd3 and their phosphorylated protein forms, and cell cycle inhibitors, p15(Ink4b) and p21(Cip1), was lower during the proliferative phase but higher during the differentiation phase. Furthermore, cyclin-dependent kinases 2, 4, and 6 showed an opposite trend of expression. TGF beta1 secretion into the media increased during the differentiation phase, indicating an autocrine regulation. The addition of TGF beta1 neutralizing antibody after the proliferative phase and silencing of Smad4 by RNA interference inhibited the trans-differentiation process. In summary, our results suggest that the trans-differentiation of AEC II to AEC I is modulated by signaling through the Smad-dependent TGF beta1 pathway by altering the expression of proteins that control the G1 to S phase entry in the cell cycle. 相似文献
14.
Sunil VR Connor AJ Guo Y Laskin JD Laskin DL 《American journal of physiology. Lung cellular and molecular physiology》2002,282(4):L872-L880
Lung injury induced by acute endotoxemia is associated with increased generation of inflammatory mediators such as nitric oxide and eicosanoids, which have been implicated in the pathophysiological process. Although production of these mediators by alveolar macrophages (AM) has been characterized, the response of type II cells is unknown and was assessed in the present studies. Acute endotoxemia caused a rapid (within 1 h) and prolonged (up to 48 h) induction of nitric oxide synthase-2 (NOS-2) in type II cells but a delayed response in AM (12-24 h). In both cell types, this was associated with increased nitric oxide production. Although type II cells, and to a lesser extent AM, constitutively expressed cyclooxygenase-2, acute endotoxemia did not alter this activity. Endotoxin administration had no effect on mitogen-activated protein kinase or protein kinase B-alpha (PKB-alpha) expression. However, increases in phosphoinositide 3-kinase and phospho-PKB-alpha were observed in type II cells. The finding that this was delayed for 12-24 h suggests that these proteins do not play a significant role in the regulation of NOS-2 in this model. After endotoxin administration to rats, a rapid (within 1-2 h) activation of nuclear factor-kappaB was observed. This response was transient in type II cells but was sustained in AM. Interferon regulatory factor-1 (IRF-1) was also activated rapidly in type II cells. In contrast, IRF-1 activation was delayed in AM. These data demonstrate that type II cells, like AM, are highly responsive during acute endotoxemia and may contribute to pulmonary inflammation. 相似文献
15.
16.
Class II molecules on rat alveolar type II epithelial cells 总被引:2,自引:0,他引:2
Class II (Ia) molecules of the major histocompatibility complex are important in the presentation of antigen to T cells and in the regulation of the immune response. Recent studies have suggested that many epithelial cell types can express class II molecules. We examined rat alveolar type II epithelial cells, a cell which can synthesize and secrete pulmonary surface-active material, for the expression of class II antigens. Using an indirect immunofluorescent technique with a mouse anti-rat class II monoclonal antibody (OX-4), the majority of type II cells isolated from pathogen-free Sprague-Dawley rats expressed Ia antigens as determined by fluorescent microscopy and cell sorter analysis. In culture, the Ia expression was lost from type II cells. The addition of recombinant interferon-gamma to cultures of type II cells induced the expression of class II antigens. These findings suggest that class II antigen expression on type II cells may have relevance to immune responses occurring in the lung. 相似文献
17.
Marissa L. Miller Deborah M. Brown Tadeusz A. Wysocki 《Biotechnology and bioengineering》2023,120(2):562-571
Influenza A viruses (IAV) have been the cause of several influenza pandemics in history and are a significant threat for the next global pandemic. Hospitalized influenza patients often have excess interferon production and a dysregulated immune response to the IAV infection. Obtaining a better understanding of the mechanisms of IAV infection that induce these harmful effects would help drug developers and health professionals create more effective treatments for IAV infection and improve patient outcomes. IAV stimulates viral sensors and receptors expressed by alveolar epithelial cells, like RIG-I and toll-like receptor 3 (TLR3). These two pathways coordinate with one another to induce expression of type III interferons to combat the infection. Presented here is a queuing theory-based model of these pathways that was designed to analyze the timing and amount of interferons produced in response to IAV single stranded RNA and double-stranded RNA detection. The model accurately represents biological data showing the necessary coordination of the RIG-I and TLR3 pathways for effective interferon production. This model can serve as the framework for future studies of IAV infection and identify new targets for potential treatments. 相似文献
18.
The alveolar type I cell is a major permeability barrier between the pulmonary interstitium and alveolar spaces and its thin cytoplasmic processes are greatly susceptible to injury. These cells are often observed to undergo progressive vesiculation, vacuolization and desquamation during 3-methylindole (3MI)-induced acute pulmonary edema after oral administration in goats and cattle. The present study describes proliferation of SER and the presence of polymerized tubulin in the form of microtubules arranged in large bundles shown at ultrastructural level as well as with immunofluorescence staining for tubulin in alveolar type I cells 72 hours after 3MI treatment. Such changes were not seen in pulmonary endothelial cells, alveolar type II cells, alveolar macrophages and neutrophils. The possible role of microtubules in alveolar type I cells as a mechanistic support to resist disruption against the forces of interstitial and alveolar edema is compared with alveolar type II cells, alveolar macrophages and neutrophils. The latter cells undergo dynamic movements in response to inflammatory stimuli and therefore did not show microtubules in their cytoplasm. 相似文献
19.
20.
Caroline Fraslon GaËlle Rolland Jacques R. Bourbon Michel Rieutort Cécile Valenza 《In vitro cellular & developmental biology. Animal》1991,27(11):843-852
Summary A serum-free culture medium (defined medium = DM) was elaborated by adding to Eagle’s minimum essential medium (MEM), non-essential
amino acids, transferrin, putrescine, tripeptide glycyl-histidyl-lysine, somatostatin, sodium selenite, ethanolamine, phosphoethanolamine,
sodium pyruvate, and metal trace elements. This medium was tested for its ability to support sustained surfactant biosynthesis
in fetal alveolar epithelial type II cells. For up to 8 days, ultrastructure was maintained with persistance of lamellar inclusion
bodies. Thymidine incorporation into DNA was enhanced about 50% in DM as compared with MEM, whereas it was enhanced 300% in
10% fetal bovine serum. With DM, the incorporation of tritiated choline into phosphatidylcholine (PC) of isolated surfactant
material was about twice that with MEM. Deletion experiments evidenced the prominent role of pyruvate, transferrin, and selenium
in the stimulation of surfactant PC biosynthesis. The addition of biotin to DM enhanced surfactant PC biosynthesis slightly
and nonsurfactant PC biosynthesis markedly. The presence of nucleosides seemed unfavorable to the synthesis of surfactant
PC. Type II cells responded to the addition of epidermal growth factor and insulinlike growth factor-I both by increased thymidine
incorporation into DNA and choline incorporation into PC. It is concluded that DM represents a useful tool for cultivating
type II cells without loss of their specialized properties and for studying the regulation of cell proliferation and surfactant
biosynthesis in a controlled environment. 相似文献