首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulated proteolysis and plant development   总被引:10,自引:0,他引:10  
  相似文献   

2.
The ubiquitin-proteasome system: central modifier of plant signalling   总被引:2,自引:0,他引:2  
CONTENTS: Summary 13 I. Brief history 13 II. Components of the ubiquitin-proteasome system 14 III. Ubiquitin-mediated degradation: a recurrent theme in the plant life cycle 18 IV. Conclusion and future prospects 25 Acknowledgements 25 References 25 SUMMARY: Ubiquitin is well established as a major modifier of signalling in eukaryotes. However, the extent to which plants rely on ubiquitin for regulating their lifecycle is only recently becoming apparent. This is underlined by the over-representation of genes encoding ubiquitin-metabolizing enzymes in Arabidopsis when compared with other model eukaryotes. The main characteristic of ubiquitination is the conjugation of ubiquitin onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The ubiquitin-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental conditions. This review maps out the roles of the components of the ubiquitin-proteasome system with emphasis on areas where future research is urgently needed. We provide a flavour of the diverse aspects of plant lifecycle where the ubiquitin-proteasome system is implicated. We aim to highlight common themes using key examples that reiterate the importance of the ubiquitin-proteasome system to plants. The future challenge in plant biology is to define the targets for ubiquitination, their interactors and their molecular function within the regulatory context.  相似文献   

3.
Proteasome is a multi-subunit proteolytic complex that degrades proteins covalently linked to multiple molecules of ubiquitin. Earlier studies showed a role for the ubiquitin-proteasome pathway in several models of long-term memory and other forms of synaptic plasticity. In Aplysia, the ubiquitin-proteasome pathway has been shown to contribute to the induction of long-term facilitation. In other model systems, ubiquitin-proteasome-mediated proteolysis has also been shown to play a role in synapse development. Previous studies of synaptic plasticity focused on changes in components or the substrates of the ubiquitin-proteasome pathway in whole neurons. Modification of specific synapses would require precise spatial and temporal regulation of the components of the ubiquitin-proteasome pathway within the subcellular compartments of neurons during learning. As a first step towards testing the idea of local regulation of the ubiquitin-proteasome pathway in neurons, we investigated proteasome activity in nuclear and synaptosomal fractions. Here we show that proteasome activity in the synaptic terminals is higher compared to the activity in the nucleus in the Aplysia nervous system as well as in the mouse brain. Furthermore, the proteasome activity in the two neuronal compartments is differentially modulated by protein kinases. Differential regulation of proteasome activity in neuronal compartments such as the synaptic terminals is likely to be a key mechanism underlying synapse-specific plasticity.  相似文献   

4.
Ca(2+)-dependent proteolysis in muscle wasting   总被引:6,自引:0,他引:6  
Skeletal muscle wasting is a prominent feature of cachexia, a complex systemic syndrome that frequently complicates chronic diseases such as inflammatory and autoimmune disorders, cancer and AIDS. Muscle wasting may also develop as a manifestation of primary or neurogenic muscular disorders. It is now generally accepted that muscle depletion mainly arises from increased protein catabolism. The ubiquitin-proteasome system is believed to be the major proteolytic machinery in charge of such protein breakdown, yet there is evidence suggesting that Ca(2+)-dependent system, lysosomes and, in some conditions at least, even caspases are involved as well. The role of Ca(2+)-dependent proteolysis in skeletal muscle wasting is reviewed in the present paper. This system relies on the activity of calpains, a family of Ca(2+)-dependent cysteine proteases, whose regulation is complex and not completely elucidated. Modulations of Ca(2+)-dependent proteolysis have been associated with muscle protein depletion in various pathological contexts and particularly with muscle dystrophies. Calpains can only perform a limited proteolysis of their substrates, however they may play a critical role in initiating the breakdown of myofibrillar protein, by releasing molecules that become suitable for further degradation by proteasomes. Some evidence would also support a role for lysosomes and caspases in muscle wasting. Thus it cannot be excluded that different intracellular proteolytic systems may coordinately concur in shifting muscle protein turnover towards excess catabolism. Many different signals have been proposed as potentially involved in triggering the enhanced protein breakdown that underlies muscle wasting. How they are transduced to initiate the hypercatabolic response and to activate the proteolytic pathways remains largely unknown, however.  相似文献   

5.
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the “stressed” cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs’ signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.  相似文献   

6.
7.
Starvation-induced microautophagic vacuoles in rat myocardial cells   总被引:1,自引:0,他引:1  
During prolonged starvation the heart atrophies and loses protein mass. Debate lingers over the basic mechanisms in the production of negative cardiac protein balance during starvation. The extent to which cardiac proteolysis takes place within the lysosomal vacuolar system is unknown. The present communication examines the starvation-induced changes within the lysosomal system of rat myocardial cells, as studied by means of conventional electron-microscopic techniques. Special attention has been paid to the occurrence of microautophagic vacuoles. It is concluded that during prolonged starvation microautophagic vacuoles appear in rat myocardial cells, suggesting the induction of a microautophagic pathway of lysosomal proteolysis.  相似文献   

8.
In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system.  相似文献   

9.
Proteolysis: from the lysosome to ubiquitin and the proteasome   总被引:10,自引:0,他引:10  
How the genetic code is translated into proteins was a key focus of biological research before the 1980s, but how these proteins are degraded remained a neglected area. With the discovery of the lysosome, it was suggested that cellular proteins are degraded in this organelle. However, several independent lines of experimental evidence strongly indicated that non-lysosomal pathways have an important role in intracellular proteolysis, although their identity and mechanisms of action remained obscure. The discovery of the ubiquitin-proteasome system resolved this enigma.  相似文献   

10.
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.  相似文献   

11.
During the past decade, it has become apparent that a set of ostensibly unrelated neurodegenerative diseases, including Parkinson's disease and Huntington's disease, shares striking molecular and cell biology commonalities. Each of the diseases involves protein misfolding and aggregation, resulting in inclusion bodies and other aggregates within cells. These aggregates often contain ubiquitin, which is the signal for proteolysis by the 26S proteasome, and chaperone proteins that are involved in the refolding of misfolded proteins. The link between the ubiquitin-proteasome system and neurodegeneration has been strengthened by the identification of disease-causing mutations in genes coding for several ubiquitin-proteasome pathway proteins in Parkinson's disease. However, the exact molecular connections between these systems and pathogenesis remain uncertain and controversial. In this article, we summarize the state of current knowledge, focusing on important unresolved questions.  相似文献   

12.
13.
14.
李艳凤  张强  朱大海 《遗传》2006,28(12):1591-1596
泛素介导的蛋白质降解途径是降解细胞内蛋白质的主要途径, 在维持细胞正常的蛋白质代谢中起着至关重要的作用。泛素介导的蛋白质降解途径的异常与许多疾病特别是肿瘤的发生密切相关。通过介绍泛素介导的蛋白质降解途径在细胞周期、DNA修复、细胞凋亡中的作用, 系统阐述了泛素介导的蛋白质降解途径与肿瘤发生的关系。  相似文献   

15.
Muscle atrophy is a prominent feature of catabolic conditions and in animal models of these conditions there is accelerated muscle proteolysis that is dependent on the ubiquitin-proteasome system. However, ubiquitin system cannot degrade actomyosin or myofibrils even though it rapidly degrades actin or myosin. We identified caspase-3 as the initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils. In rodent models of catabolic conditions, we find that caspase-3 is activated to cleave muscle proteins and actomyosin to fragments that are rapidly degraded by the ubiquitin system. This initial proteolytic step in muscle can be recognized because it leaves a footprint of a characteristic 14-kDa actin band. Stimulation of caspase-3 activity depends on activation of phosphatidylinositol 3-kinase. When we suppressed this enzyme in muscle cells, protein breakdown increased as did the expression of caspase-3. In addition, there was increased expression of E3-ubiquitin-conjugating enzymes that are involved in muscle proteolysis, atrogin-1/MAFbx and MuRF1. Thus, when phosphatidylinositol 3-kinase activity is low in muscle cells or rat muscle, both caspase-3 and the ubiquitin-proteasome system are stimulated to degrade protein. Additional investigations will be needed to define the cell signaling processes that activate muscle proteolysis in uremia and catabolic conditions.  相似文献   

16.
The phytohormone gibberellic acid (GA) regulates diverse aspects of plant growth and development. GA responses are triggered by the degradation of DELLA proteins, which function as repressors in GA signaling pathways. Recent studies in Arabidopsis thaliana and rice (Oryza sativa) have implied that the degradation of DELLA proteins occurred via the ubiquitin-proteasome system. Here, we developed an Arabidopsis cell-free system to recapitulate DELLA protein degradation in vitro. Using this cell-free system, we documented that Lys-29 of ubiquitin is the major site for ubiquitin chain formation to mediate DELLA protein degradation. We also confirmed the specific roles of GA receptors and multisubunit E3 ligase components in regulating DELLA protein degradation. In addition, blocking DELLA degradation with a PP1/PP2A phosphatase inhibitor in our cell-free assay suggested that degradation of DELLA proteins required protein Ser/Thr dephosphorylation activity. Furthermore, our data revealed that the LZ domain of Arabidopsis DELLA proteins is essential for both their stability and activity. Thus, our in vitro degradation system provides biochemical insights into the regulation of DELLA protein degradation. This in vitro assay system could be widely adapted for dissecting cellular signaling pathways in which regulated proteolysis is a key recurrent theme.  相似文献   

17.
Discrete sarcomere lengths have been determined from dynamically contracting isolated cardiac cells with a high-speed, high-resolution direct optical imaging system. Calcium-tolerant cardiac cells from the rat are isolated by perfusion with collagenase and hyaluronidase. Individual sarcomere lengths can be determined by directly imaging the cell's striation pattern onto a solid-state charge-coupled device (CCD) detector interfaced with a digital computer. The precision of detection in a real light microscopic optical system is discussed in relation to the type of image detector, optical contract enhancement techniques, and digital image processing. The optical performance of the direct striation pattern image apparatus has been determined empirically with test grids under standard bright-field and Nomarski-differential interference contrast (DIC) conditions for application to real muscle imaging. Discrete striation positions of isolated cells have been detected and followed with high precision during phasic contraction-relaxation cycles down to average sarcomere lengths as short as 1.43 +/- 0.053 microns. The maximum rates of contraction and relaxation are rapid and synchronous in time course along the length of the cell. These results indicate that direct optical imaging can provide an accurate means to monitor discrete striations and sarcomere lengths along the length of Ca2+-tolerant heart cells.  相似文献   

18.
Finley D 《Nature cell biology》2011,13(11):1290-1292
Misfolded proteins are potentially toxic and are therefore subjected to highly selective degradation by the ubiquitin-proteasome system. The identification of the Hul5 ubiquitin ligase as a major mediator of such 'quality-control' ubiquitylation following heat shock raises new questions about the design of these pathways.  相似文献   

19.

Background  

The ubiquitin-proteasome system is the predominant pathway for myofibrillar proteolysis but a previous study in C2C12 myotubes only observed alterations in lysosome-dependent proteolysis in response to complete starvation of amino acids or leucine from the media. Here, we determined the interaction between insulin and amino acids in the regulation of myotube proteolysis  相似文献   

20.
Paul PK  Kumar A 《Autophagy》2011,7(5):555-556
Skeletal muscle wasting is a major reason for morbidity and mortality in many chronic disease states, disuse conditions and aging. The ubiquitin-proteasome and autophagy-lysosomal systems are the two major proteolytic pathways involved in regulation of both physiological and pathological muscle wasting. Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an important adaptor protein involved in receptor-mediated activation of various signaling pathways in response to cytokines and bacterial products. TRAF6 also possesses E3 ubiquitin ligase activity causing lysine-63-linked polyubiquitination of target proteins. We have uncovered a novel role of TRAF6 in regulation of skeletal muscle mass. Muscle-wasting stimuli upregulate the expression, as well as the auto-ubiquitination, of TRAF6 leading to downstream activation of major catabolic pathways in skeletal muscle. Muscle-specific depletion of TRAF6 preserves skeletal muscle mass in a mouse model of cancer cachexia or denervation. Inhibition of TRAF6 also blocks the expression of the components of the ubiquitin-proteasome system (UPS) and autophagosome formation in atrophying skeletal muscle. While more investigations are required to understand its mechanisms of action in skeletal muscle, our results indicate that blocking TRAF6 activity can be used as a therapeutic approach to preserve skeletal muscle mass and function in different disease states and conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号