首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p53, the major human tumor suppressor, appears to be related to sonic hedgehog (Shh)-Gli-mediated tumorigenesis. However, the role of p53 in tumor progression by the Shh-Gli signaling pathway is poorly understood. Herein we investigated the critical regulation of Gli3-p53 in tumorigenesis of colon cancer cells and the molecular mechanisms underlying these effects. RT-PCR analysis indicated that the mRNA level of Shh and Gli3 in colon tumor tissues was significantly higher than corresponding normal tissues (P<0.001). The inhibition of Gli3 by treatment with Gli3 siRNA resulted in a clear decrease in cell proliferation and enhanced the level of expression of p53 proteins compared to treatment with control siRNA. The half-life of p53 was dramatically increased by treatment with Gli3 siRNA. In addition, treatment with MG132 blocked MDM2-mediated p53 ubiquitination and degradation, and led to accumulation of p53 in Gli3 siRNA-overexpressing cells. Importantly, ectopic expression of p53 siRNA reduced the ability of Gli3 siRNA to suppress proliferation of those cells compared with the cells treated with Gli3 siRNA alone. Moreover, Gli3 siRNA sensitized colon cancer cells to treatment with anti-cancer agents (5-FU and bevacizumab). Taken together, our studies demonstrate that loss of Gli3 signaling leads to disruption of the MDM2-p53 interaction and strongly potentiate p53-dependent cell growth inhibition in colon cancer cells, indicating a basis for the rational use of Gli3 antagonists as a novel treatment option for colon cancer.  相似文献   

2.
3.
4.
The tumor suppressor p53 is inactivated by multiple mechanisms that include mutations of the p53 gene itself and increased levels of the p53 inhibitors MDM2 and MDM4. Mice lacking Mdm2 or Mdm4 exhibit embryo-lethal phenotypes that are completely rescued by concomitant deletion of p53. Here we show that Mdm2 and Mdm4 haploinsufficiency leads to increased p53 activity, exhibited as increased sensitivity to DNA damage and decreased transformation potential. Moreover, in in vivo tumor development, Emu-myc Mdm4+/- mice show a delayed onset of B-cell lymphomas compared to Emu-myc mice. Additionally, Mdm2+/- Mdm4+/- double-heterozygous mice are not viable and exhibit defects in hematopoiesis and cerebellar development. The defects in Mdm2+/- Mdm4+/- mice are corrected by deletion of a single p53 allele. These findings highlight the exquisite sensitivity of p53 to Mdm2 and Mdm4 levels and suggest that some cell types may be more sensitive to therapeutic drugs that inhibit the Mdm-p53 interaction.  相似文献   

5.
Medulloblastoma, the most common malignant brain tumor of childhood, is believed to derive from immature granule neuron precursors (GNPs) that normally proliferate in the external granule layer before exiting the cell cycle and migrating to their mature location in the inner granule layer. In this study, we examined the expression of D type cyclins in GNPs during cerebellar development and showed that GNPs in early development expressed only cyclin D1, whereas later GNPs expressed both cyclins D1 and D2. Coinciding with the period of cyclin D1-only expression, Ccnd1(-/-) mice showed reduced proliferation of GNPs and impaired growth of the cerebellum. Interestingly, removal of cyclin D1 was sufficient to drastically reduce the incidence of medulloblastoma in Ptch1(+/-) mice, despite the fact that these tumors showed upregulation of both cyclins D1 and D2. We showed that cyclin D1 has an earlier role in tumorigenesis: in the absence of cyclin D1, the incidence and overall volume of ;preneoplastic' lesions were significantly decreased. We propose a model that links a role of cyclin D1 in normal GNP proliferation with its early role in tumorigenesis.  相似文献   

6.
Wortham M  Jin G  Sun JL  Bigner DD  He Y  Yan H 《PloS one》2012,7(4):e36211
Dysregulation of Otx2 is a hallmark of the pediatric brain tumor medulloblastoma, yet its functional significance in the establishment of these tumors is unknown. Here we have sought to determine the functional consequences of Otx2 overexpression in the mouse hindbrain to characterize its potential role in medulloblastoma tumorigenesis and identify the cell types responsive to this lineage-specific oncogene. Expression of Otx2 broadly in the mouse hindbrain resulted in the accumulation of proliferative clusters of cells in the cerebellar white matter and dorsal brainstem of postnatal mice. We found that brainstem ectopia were derived from neuronal progenitors of the rhombic lip and that cerebellar ectopia were derived from granule neuron precursors (GNPs) that had migrated inwards from the external granule layer (EGL). These hyperplasias exhibited various characteristics of medulloblastoma precursor cells identified in animal models of Shh or Wnt group tumors, including aberrant localization and altered spatiotemporal control of proliferation. However, ectopia induced by Otx2 differentiated and dispersed as the animals reached adulthood, indicating that factors restricting proliferative lifespan were a limiting factor to full transformation of these cells. These studies implicate a role for Otx2 in altering the dynamics of neuronal progenitor cell proliferation.  相似文献   

7.
Granule neuron progenitors (GNPs) are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh) secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3), another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.  相似文献   

8.
Neuronal precursor cells in the developing cerebellum require activity of the sonic hedgehog (Shh) and phosphoinositide-3-kinase (PI3K) pathways for growth and survival. Synergy between the Shh and PI3K signaling pathways are implicated in the cerebellar tumor medulloblastoma. Here, we describe a mechanism through which these disparate signaling pathways cooperate to promote proliferation of cerebellar granule neuron precursors. Shh signaling drives expression of mRNA encoding the Nmyc1 oncoprotein (previously N-myc), which is essential for expansion of cerebellar granule neuron precursors. The PI3K pathway stabilizes Nmyc1 protein via inhibition of GSK3-dependent Nmyc1 phosphorylation and degradation. The effects of PI3K activity on Nmyc1 stabilization are mimicked by insulin-like growth factor, a PI3K agonist with roles in central nervous system precursor growth and tumorigenesis. These findings indicate that Shh and PI3K signaling pathways converge on N-Myc to regulate neuronal precursor cell cycle progression. Furthermore, they provide a rationale for therapeutic targeting of PI3K signaling in medulloblastoma.  相似文献   

9.
D J Solecki  X L Liu  T Tomoda  Y Fang  M E Hatten 《Neuron》2001,31(4):557-568
In the developing cerebellar cortex, granule neuron precursors (GNPs) proliferate and commence differentiation in a superficial zone, the external granule layer (EGL). The molecular basis of the transition from proliferating precursors to immature differentiating neurons remains unknown. Notch signaling is an evolutionarily conserved pathway regulating the differentiation of precursor cells of many lineages. Notch2 is specifically expressed in proliferating GNPs in the EGL. Treatment of GNPs with soluble Notch ligand Jagged1, or overexpression of activated Notch2 or its downstream target HES1, maintains precursor proliferation. The addition of GNP mitogens Jagged1 or Sonic Hedgehog (Shh) upregulates the expression of HES1, suggesting a role for HES1 in maintaining precursor proliferation.  相似文献   

10.
PTEN regulates Mdm2 expression through the P1 promoter   总被引:6,自引:0,他引:6  
  相似文献   

11.
Mdm2 and Mdm4 loss regulates distinct p53 activities   总被引:1,自引:0,他引:1  
Mutational inactivation of p53 is a hallmark of most human tumors. Loss of p53 function also occurs by overexpression of negative regulators such as MDM2 and MDM4. Deletion of Mdm2 or Mdm4 in mice results in p53-dependent embryo lethality due to constitutive p53 activity. However, Mdm2(-/-) and Mdm4(-/-) embryos display divergent phenotypes, suggesting that Mdm2 and Mdm4 exert distinct control over p53. To explore the interaction between Mdm2 and Mdm4 in p53 regulation, we first generated mice and cells that are triple null for p53, Mdm2, and Mdm4. These mice had identical survival curves and tumor spectrum as p53(-/-) mice, substantiating the principal role of Mdm2 and Mdm4 as negative p53 regulators. We next generated mouse embryo fibroblasts null for p53 with deletions of Mdm2, Mdm4, or both; introduced a retrovirus expressing a temperature-sensitive p53 mutant, p53A135V; and examined p53 stability and activity. In this system, p53 activated distinct target genes, leading to apoptosis in cells lacking Mdm2 and a cell cycle arrest in cells lacking Mdm4. Cells lacking both Mdm2 and Mdm4 had a stable p53 that initiated apoptosis similar to Mdm2-null cells. Additionally, stabilization of p53 in cells lacking Mdm4 with the Mdm2 antagonist nutlin-3 was sufficient to induce a cell death response. These data further differentiate the roles of Mdm2 and Mdm4 in the regulation of p53 activities.  相似文献   

12.
Inactivation of the Arf-Mdm2-p53 tumor suppressor pathway is a necessary event for tumorigenesis. Arf controls Mdm2, which in turn regulates p53, but Arf and Mdm2 also have p53-independent functions that affect tumor development. Moreover, inhibition of oncogene-induced tumorigenesis relies on Arf and p53, but the requirements of Arf and p53 in tumor development initiated in the absence of overt oncogene overexpression and the role of Mdm2 in this process remain unclear. In a series of genetic experiments in mice with defined deficiencies in Arf, Mdm2 and/or p53, we show Mdm2 haploinsufficiency significantly delayed tumorigenesis in mice deficient in Arf and p53. Mdm2 heterozygosity significantly inhibited tumor development in the absence of Arf, and in contrast to Myc oncogene-driven cancer, this delay in tumorigenesis could not be rescued with the presence of one allele of Arf. Notably, Mdm2 haploinsufficieny blocked the accelerated tumor development in Arf deficient mice caused by p53 heterozygosity. However, tumorigenesis was not inhibited in Mdm2 heterozygous mice lacking both alleles of p53 regardless of Arf status. Surprisingly, loss of Arf accelerated tumor development in p53-null mice. Tumor spectrum was largely dictated by Arf and p53 status with Mdm2 haploinsufficiency only modestly altering the tumor type in some of the genotypes and not the number of primary tumors that arose. Therefore, the significant effects of Mdm2 haploinsufficiency on tumor latency were independent of Arf and required at least one allele of p53, and an Mdm2 deficiency had minor effects on the types of tumors that developed. These data also demonstrate that decreased levels of Mdm2 are protective in the presence of multiple genetic events in Arf and p53 genes that normally accelerate tumorigenesis.  相似文献   

13.
Pan W  Issaq S  Zhang Y 《PloS one》2011,6(6):e21625
The Mdm2-p53 tumor suppression pathway plays a vital role in regulating cellular homeostasis by integrating a variety of stressors and eliciting effects on cell growth and proliferation. Recent studies have demonstrated an in vivo signaling pathway mediated by ribosomal protein (RP)-Mdm2 interaction that responds to ribosome biogenesis stress and evokes a protective p53 reaction. It has been shown that mice harboring a Cys-to-Phe mutation in the zinc finger of Mdm2 that specifically disrupts RP L11-Mdm2 binding are prone to accelerated lymphomagenesis in an oncogenic c-Myc driven mouse model of Burkitt's lymphoma. Because most oncogenes when upregulated simultaneously promote both cellular growth and proliferation, it therefore stands to reason that the RP-Mdm2-p53 pathway might also be essential in response to oncogenes other than c-Myc. Using genetically engineered mice, we now show that disruption of the RP-Mdm2-p53 pathway by an Mdm2(C305F) mutation does not accelerate prostatic tumorigenesis induced by inactivation of the pRb family proteins (pRb/p107/p130). In contrast, loss of p19Arf greatly accelerates the progression of prostate cancer induced by inhibition of pRb family proteins. Moreover, using ectopically expressed oncogenic H-Ras we demonstrate that p53 response remains intact in the Mdm2(C305F) mutant MEF cells. Thus, unlike the p19Arf-Mdm2-p53 pathway, which is considered a general oncogenic response pathway, the RP-Mdm2-p53 pathway appears to specifically suppress tumorigenesis induced by oncogenic c-Myc.  相似文献   

14.
Hedgehog pathway activation is required for expansion of specific neuronal precursor populations during development and is etiologic in the human cerebellar tumor, medulloblastoma. We report that sonic hedgehog (Shh) signaling upregulates expression of the proto-oncogene Nmyc in cultured cerebellar granule neuron precursors (CGNPs) in the absence of new protein synthesis. The temporal-spatial expression pattern of Nmyc, but not other Myc family members, precisely coincides with regions of hedgehog proliferative activity in the developing cerebellum and is observed in medulloblastomas of Patched (Ptch) heterozygous mice. Overexpression of Nmyc promotes cell-autonomous G(1) cyclin upregulation and CGNP proliferation independent of Shh signaling. Furthermore, Myc antagonism in vitro significantly decreases proliferative effects of Shh in cultured CGNPs. Together, these findings identify Nmyc as a direct target of the Shh pathway that functions to regulate cell cycle progression in cerebellar granule neuron precursors.  相似文献   

15.
Mdm2 and MdmX are structurally related p53-binding proteins that function as critical negative regulators of p53 activity in embryonic and adult tissue. The overexpression of Mdm2 or MdmX inhibits p53 tumor suppressor functions in vitro, and the amplification of Mdm2 or MdmX is observed in human cancers retaining wild-type p53. We now demonstrate a surprising role for MdmX in suppressing tumorigenesis that is distinct from its oncogenic ability to inhibit p53. The deletion of MdmX induces multipolar mitotic spindle formation and the loss of chromosomes from hyperploid p53-null cells. This reduction in chromosome number, not observed in p53-null cells with Mdm2 deleted, correlates with increased cell proliferation and the spontaneous transformation of MdmX/p53-null mouse embryonic fibroblasts in vitro and with an increased rate of spontaneous tumorigenesis in MdmX/p53-null mice in vivo. These results indicate that MdmX has a p53-independent role in suppressing oncogenic cell transformation, proliferation, and tumorigenesis by promoting centrosome clustering and bipolar mitosis.  相似文献   

16.
17.
Medulloblastoma, the most common pediatric brain tumor, is thought to arise from deregulated proliferation of cerebellar granule precursor (CGP) cells. Sonic hedgehog (Shh) is the primary mitogen that regulates proliferation of CGP cells during the early stages of postnatal cerebellum development. Aberrant activation of Shh signaling during this time has been associated with hyperplasia of CGP cells and eventually may lead to the development of medulloblastoma. The molecular targets of Shh signaling involved in medulloblastoma formation are still not well-understood. Here, we show that Shh regulates sustained activation of histone deacetylases (HDACs) and that this activity is required for continued proliferation of CGP cells. Suppression of HDAC activity not only blocked the Shh-induced CGP proliferation in primary cell cultures, but also ameliorated aberrant CGP proliferation at the external germinal layer (EGL) in a medulloblastoma mouse model. Increased levels of mRNA and protein of several HDAC family members were found in medulloblastoma compared to wild type cerebellum suggesting that HDAC activity is required for the survival/progression of tumor cells. The identification of a role of HDACs in the early steps of medulloblastoma formation suggests there may be a therapeutic potential for HDAC inhibitors in this disease.  相似文献   

18.
The WNT pathway plays multiple roles in neural development and is crucial for establishment of the embryonic cerebellum. In addition, WNT pathway mutations are associated with medulloblastoma, the most common malignant brain tumor in children. However, the cell types within the cerebellum that are responsive to WNT signaling remain unknown. Here we investigate the effects of canonical WNT signaling on two important classes of progenitors in the developing cerebellum: multipotent neural stem cells (NSCs) and granule neuron precursors (GNPs). We show that WNT pathway activation in vitro promotes proliferation of NSCs but not GNPs. Moreover, mice that express activated β-catenin in the cerebellar ventricular zone exhibit increased proliferation of NSCs in that region, whereas expression of the same protein in GNPs impairs proliferation. Although β-catenin-expressing NSCs proliferate they do not undergo prolonged expansion or neoplastic growth; rather, WNT signaling markedly interferes with their capacity for self-renewal and differentiation. At a molecular level, mutant NSCs exhibit increased expression of c-Myc, which might account for their transient proliferation, but also express high levels of bone morphogenetic proteins and the cyclin-dependent kinase inhibitor p21, which might contribute to their altered self-renewal and differentiation. These studies suggest that the WNT pathway is a potent regulator of cerebellar stem cell growth and differentiation.  相似文献   

19.
Heterozygous deletions encompassing the ZIC1;ZIC4 locus have been identified in a subset of individuals with the common cerebellar birth defect Dandy-Walker malformation (DWM). Deletion of Zic1 and Zic4 in mice produces both cerebellar size and foliation defects similar to human DWM, confirming a requirement for these genes in cerebellar development and providing a model to delineate the developmental basis of this clinically important congenital malformation. Here, we show that reduced cerebellar size in Zic1 and Zic4 mutants results from decreased postnatal granule cell progenitor proliferation. Through genetic and molecular analyses, we show that Zic1 and Zic4 have Shh-dependent function promoting proliferation of granule cell progenitors. Expression of the Shh-downstream genes Ptch1, Gli1 and Mycn was downregulated in Zic1/4 mutants, although Shh production and Purkinje cell gene expression were normal. Reduction of Shh dose on the Zic1(+/-);Zic4(+/-) background also resulted in cerebellar size reductions and gene expression changes comparable with those observed in Zic1(-/-);Zic4(-/-) mice. Zic1 and Zic4 are additionally required to pattern anterior vermis foliation. Zic mutant folial patterning abnormalities correlated with disrupted cerebellar anlage gene expression and Purkinje cell topography during late embryonic stages; however, this phenotype was Shh independent. In Zic1(+/-);Zic4(+/-);Shh(+/-), we observed normal cerebellar anlage patterning and foliation. Furthermore, cerebellar patterning was normal in both Gli2-cko and Smo-cko mutant mice, where all Shh function was removed from the developing cerebellum. Thus, our data demonstrate that Zic1 and Zic4 have both Shh-dependent and -independent roles during cerebellar development and that multiple developmental disruptions underlie Zic1/4-related DWM.  相似文献   

20.
Foliation of the mouse cerebellum occurs primarily during the first 2 weeks after birth and is accompanied by tremendous proliferation of granule cell precursors (GCPs). We have previously shown that sonic hedgehog (Shh) signaling correlates spatially and temporally with fissure formation, and that Gli2 is the main activator driving Shh induced proliferation of embryonic GCPs. Here, we have tested whether the level of Shh signaling regulates the extent of cerebellar foliation. By progressively lowering signaling by removing Gli1 and Gli2 or the Shh receptor smoothened, we found the extent of foliation is gradually reduced, and that this correlates with a decrease in the duration of GCP proliferation. Importantly, the pattern of the remaining fissures in the mutants corresponds to the first fissures that form during normal development. In a complementary manner, an increase in the level and length of Shh signaling results in formation of an extra fissure in a position conserved in rat. The complexity of cerebellar foliation varies greatly between vertebrate species. Our studies have uncovered a mechanism by which the level and length of Shh signaling could be integral to determining the distinct number of fissures in each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号