首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The EGFR‐driven cell‐cycle pathway has been extensively studied due to its pivotal role in breast cancer proliferation and pathogenesis. Although several studies reported regulation of individual pathway components by microRNAs (miRNAs), little is known about how miRNAs coordinate the EGFR protein network on a global miRNA (miRNome) level. Here, we combined a large‐scale miRNA screening approach with a high‐throughput proteomic readout and network‐based data analysis to identify which miRNAs are involved, and to uncover potential regulatory patterns. Our results indicated that the regulation of proteins by miRNAs is dominated by the nucleotide matching mechanism between seed sequences of the miRNAs and 3′‐UTR of target genes. Furthermore, the novel network‐analysis methodology we developed implied the existence of consistent intrinsic regulatory patterns where miRNAs simultaneously co‐regulate several proteins acting in the same functional module. Finally, our approach led us to identify and validate three miRNAs (miR‐124, miR‐147 and miR‐193a‐3p) as novel tumor suppressors that co‐target EGFR‐driven cell‐cycle network proteins and inhibit cell‐cycle progression and proliferation in breast cancer.  相似文献   

2.
3.
4.
5.
Dicer is a key enzyme involved in RNA interference (RNAi) and microRNA (miRNA) pathways. It is required for biogenesis of miRNAs and small interfering RNAs (siRNAs), and also has a role in the effector steps of RNA silencing. Apart from Argonautes, no proteins are known to associate with Dicer in mammalian cells. In this work, we describe the identification of TRBP (human immunodeficiency virus (HIV-1) transactivating response (TAR) RNA-binding protein) as a protein partner of human Dicer. We show that TRBP is required for optimal RNA silencing mediated by siRNAs and endogenous miRNAs, and that it facilitates cleavage of pre-miRNA in vitro. TRBP had previously been assigned several functions, including inhibition of the interferon-induced double-stranded RNA-regulated protein kinase PKR and modulation of HIV-1 gene expression by association with TAR. The TRBP-Dicer interaction shown raises interesting questions about the potential interplay between RNAi and interferon-PKR pathways.  相似文献   

6.
The formation of dimers or higher-order multimers is critical to the biological activity of many eukaryotic regulatory proteins. However, biochemical analyses of the multimerization capacity of the Tat trans activator of human immunodeficiency virus types 1 (HIV-1) and 2 (HIV-2) have yielded contradictory results. We used the two-hybrid genetic assay for protein-protein interactions in the eukaryote Saccharomyces cerevisiae (S. Fields and O.-K. Song, Nature [London] 340:245-246, 1989) to examine the multimerization of Tat in vivo. Both HIV-1 and HIV-2 Tat are shown to form specific homo- but not heteromultimers in the yeast cell nucleus. Mutational analysis indicates a critical role for the essential core motif of Tat in mediating this interaction but demonstrates that efficient Tat multimerization does not require an intact cysteine motif. These data raise the possibility that the multimerization of Tat may be important for Tat function in higher eukaryotes.  相似文献   

7.
TP53基因(编码p53蛋白)作为一个重要的抑瘤基因,通过调控一系列信号转导通路广泛参与了多种恶性肿瘤的发生发展,一直是肿瘤分子生物学研究领域的热点.最近的研究发现,microRNAs(miRNAs)参与了TP53的信号通路,它们之间存在着复杂的调控网络.一方面,p53通过调控一些miRNAs的转录及转录后成熟,促进细胞周期阻滞、诱导细胞凋亡和衰老,抑制肿瘤发生.另一方面,许多miRNAs,如miR-25、miR-30d、miR-125b和miR-504等可直接调控p53的表达与活性,参与TP53信号通路的调节,还有一些miRNAs则通过调节p53上下游基因,发挥重要的生物学功能.其中,最具有代表性的是miR-34家族,它们受p53直接调控并参与TP53信号通路,通过靶向抑制多个TP53信号通路关键分子的表达,发挥抑瘤作用.此外,它们还可以通过抑制沉默信息调节子,增强p53的活性,反馈调节TP53信号通路.miRNAs与TP53之间调控网络的研究,是对TP53抑瘤机制的重要补充.  相似文献   

8.
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.  相似文献   

9.
Regulation of HIV-1 gene expression.   总被引:28,自引:0,他引:28  
B R Cullen 《FASEB journal》1991,5(10):2361-2368
  相似文献   

10.
11.
12.
13.
14.

Background

MicroRNAs (miRNAs) are a class of endogenous small regulatory RNAs. Identifications of the dys-regulated or perturbed miRNAs and their key target genes are important for understanding the regulatory networks associated with the studied cellular processes. Several computational methods have been developed to infer the perturbed miRNA regulatory networks by integrating genome-wide gene expression data and sequence-based miRNA-target predictions. However, most of them only use the expression information of the miRNA direct targets, rarely considering the secondary effects of miRNA perturbation on the global gene regulatory networks.

Results

We proposed a network propagation based method to infer the perturbed miRNAs and their key target genes by integrating gene expressions and global gene regulatory network information. The method used random walk with restart in gene regulatory networks to model the network effects of the miRNA perturbation. Then, it evaluated the significance of the correlation between the network effects of the miRNA perturbation and the gene differential expression levels with a forward searching strategy. Results show that our method outperformed several compared methods in rediscovering the experimentally perturbed miRNAs in cancer cell lines. Then, we applied it on a gene expression dataset of colorectal cancer clinical patient samples and inferred the perturbed miRNA regulatory networks of colorectal cancer, including several known oncogenic or tumor-suppressive miRNAs, such as miR-17, miR-26 and miR-145.

Conclusions

Our network propagation based method takes advantage of the network effect of the miRNA perturbation on its target genes. It is a useful approach to infer the perturbed miRNAs and their key target genes associated with the studied biological processes using gene expression data.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-255) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
The class of persistent gamma-herpesviruses has developed a variety of strategies that exploit host-cell regulatory pathways to ensure a long-lasting, well-balanced infection of their host. However when these pathways are deregulated, an otherwise harmless infection can lead to disease including cancer. We recently demonstrated that the human herpes virus 4 (HHV4) also known as Epstein-Barr virus (EBV), encodes for small regulatory non-coding microRNAs (miRNAs) that can be transferred from an infected cell to uninfected neighboring cells. Upon arrival these miRNAs are functional in the recipient cell, in that they are able to down regulate specific target genes. These secreted miRNAs are transported to recipient cells via small nano-sized vesicles (known as exosomes) that are of endosomal origin, formed as intraluminal vesicles (ILV) inside multivesicular bodies (MVB). One question that needs to be addressed is how viral miRNAs are sorted into these exosomes. Mature miRNAs, including those of viral origin, are loaded into RNA-induced silencing complexes (RISC) for gene silencing via blocking mRNA translation and/or initiating mRNA decay. Recent insights indicate that cytoplasmic RNA granules rich in RISC complexes are closely associated with endosomes. In fact, selective components of RISC, including GW182 and Argonaut proteins, miRNAs and mRNAs are present in exosomes. Thus miRNA function, mRNA stability and exosome-mediated intercellular communication converge at the level of endosomes. Since endosomes can be considered as key intracellular cross-roads that regulate communication of cells with their exterior, including neighboring cells, it is perhaps not surprising that viruses have found means to exploit this pathway to their benefit. Little is known however, how and if (micro) RNA species are specifically sorted into ILVs and what (micro)RNA-binding proteins are involved. Here we discuss recent developments relating to intracellular trafficking and function of miRNA-containing protein complexes that EBV may exploit for promoting or restricting miRNAs sorting into exosomes for intercellular regulatory functions. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

17.
18.
ESCRT-III protein requirements for HIV-1 budding   总被引:1,自引:0,他引:1  
Two early-acting components of the cellular ESCRT pathway, ESCRT-I and ALIX, participate directly in HIV-1 budding. The membrane fission activities of ESCRT-III subunits are also presumably required, but humans express 11 different CHMP/ESCRT-III proteins whose functional contributions are not yet clear. We therefore depleted cells of each of the different CHMP proteins and protein families and examined the effects on HIV-1 budding. Virus release was profoundly inhibited by codepletion of either CHMP2 or CHMP4 family members, resulting in ≥100-fold titer reductions. CHMP2A and CHMP4B proteins bound one another, and this interaction was required for budding. By contrast, virus release was reduced only modestly by depletion of CHMP3 and CHMP1 proteins (2- to 8-fold titer reductions) and was unaffected by depletion of other human ESCRT-III proteins. HIV-1 budding therefore requires only a subset of the known human ESCRT-III proteins, with the CHMP2 and CHMP4 families playing key functional roles.  相似文献   

19.
A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号