首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress may be viewed as an imbalance between reactive oxygen species (ROS) and oxidant production and the state of glutathione redox buffer and antioxidant defense system. Recently, a new paradigm of redox signaling has emerged whereby ROS and oxidants can function as intracellular signaling molecules, where ROS- and oxidant-induced death signal is converted into a survival signal. It is now known that oxidative stress is involved in cardiac hypertrophy and in the pathogenesis of cardiomyopathies, ischemic heart disease and congestive heart failure. Phospholipase D (PLD) is an important signaling enzyme in mammalian cells, including cardiomyocytes. PLD catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA). Two mammalian PLD isozymes, PLD1 and PLD2 have been identified, characterized and cloned. The importance of PA in heart function is evident from its ability to stimulate cardiac sarcolemmal membrane and sarcoplasmic reticular Ca2+-related transport systems and to increase the intracellular concentration of free Ca2+ in adult cardiomyocytes and augment cardiac contractile activity of the normal heart. In addition, PA is also considered an important signal transducer in cardiac hypertrophy. Accordingly, this review discusses a role for redox signaling mediated via PLD in ischemic preconditioning and examines how oxidative stress affects PLD in normal hearts and during different myocardial diseases. In addition, the review provides a comparative account on the regulation of PLD activities in vascular smooth muscle cells under conditions of oxidative stress.  相似文献   

2.
3.
4.
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.  相似文献   

5.
Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.  相似文献   

6.
7.
Cardiac hypertrophy is a pathophysiological response to various pathological stresses and ultimately leads to heart failure. Oxidative stress is one of the critical processes involved in hypertrophy development. Fisetin, a small molecular flavonoid, has been shown to have anti-oxidative, anti-proliferative and anti-inflammatory properties. However, the effect of fisetin on cardiac hypertrophy remains unknown. In our present study, we showed that fisetin inhibited pressure overload-induced cardiac hypertrophy, improved cardiac function in vivo and suppressed phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. Reactive oxygen species (ROS) levels were markedly decreased by fisetin treatment in both hypertrophic hearts and cardiomyocytes. Moreover, fisetin significantly up-regulated the expression of antioxidative genes, including catalase (CAT), superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1). Furthermore, co-treatment with N-acetylcysteine (NAC; ROS scavenger) and fisetin did not have synergistic inhibitory effects on PE-induced cardiomyocyte hypertrophy, indicating that the anti-hypertrophic effects of fisetin are mainly associated with the blockade of oxidative stress. Finally, the pro-hypertrophic signaling pathways, mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) kinase, were found to be suppressed by fisetin after pressure overload and PE treatment. In conclusion, our study revealed that fisetin protects against cardiac hypertrophy and that oxidative stress inhibition may be one of the pivotal mechanisms involved.  相似文献   

8.
Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses.  相似文献   

9.
Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.  相似文献   

10.
11.
Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.  相似文献   

12.
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.  相似文献   

13.
Reactive oxygen species (ROS) encompass a variety of diverse chemical species including superoxide anions, hydrogen peroxide, hydroxyl radicals and peroxynitrite, which are mainly produced via mitochondrial oxidative metabolism, enzymatic reactions, and light-initiated lipid peroxidation. Over-production of ROS and/or decrease in the antioxidant capacity cause cells to undergo oxidative stress that damages cellular macromolecules such as proteins, lipids, and DNA. Oxidative stress is associated with ageing and the development of age-related diseases such as cancer and age-related macular degeneration. ROS activate signaling pathways that promote cell survival or lead to cell death, depending on the source and site of ROS production, the specific ROS generated, the concentration and kinetics of ROS generation, and the cell types being challenged. However, how the nature and compartmentalization of ROS contribute to the pathogenesis of individual diseases is poorly understood. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of cell oxidative stress signaling, which will then provide novel therapeutic opportunities to interfere with disease progression via targeting specific signaling pathways. Currently, Dr. Qin's work is focused on inflammatory and oxidative stress responses using the retinal pigment epithelial (RPE) cells as a model. The study of RPE cell inflammatory and oxidative stress responses has successfully led to a better understanding of RPE cell biology and identification of potential therapeutic targets.  相似文献   

14.
Oxidative stress and the accumulation of reactive oxygen specie (ROS) play a role in cancer cells developing an advanced, phenotypic signature that associates with metastasis and progression. Increased ROS concentrations are involved in promoting cancer development and metastasis by inducing expression of oncogenes, suppressing activity of anti-survival molecules and by activating various cell survival and proliferation signaling pathways. Oxidative stress is higher in the epithelium of cancer patients than patients without the disease, and antioxidant trials are currently being explored as a therapeutic option. However, studies have shown that ROS increases expression of CXCR4 in cancer and immune cells. CXCR4 expression in tumors strongly correlates to metastasis and poor prognosis. Herein, we discuss an emerging relationship between ROS and CXCR4 in cancer cells.  相似文献   

15.
In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.  相似文献   

16.
17.
Oxidative stress is linked to the pathogenesis and pathobiochemistry of various diseases, including cancer, diabetes and cardiovascular disorders. The non-specific damaging effect of reactive oxygen species (ROS) generated during oxidative stress is involved in the development of diseases, as well as the activation of specific signaling cascades in cells exposed to the higher oxidant load. A cellular signaling cascade that is activated by several types of reactive oxygen species is the phosphoinositide 3'-kinase (PI 3-kinase)/protein kinase B (PKB) pathway, which regulates cellular survival and fuel metabolism, thus establishing a link between oxidative stress and signaling in neoplastic, metabolic or degenerative diseases. Several links of PI 3-kinase/PKB signaling to ROS are discussed in this review, with particular focus on the molecular mechanisms involved in the regulation of PI 3-kinase signaling by oxidative stress and important players such as (i) the glutathione and glutaredoxin system, (ii) the thioredoxin system and (iii) Ser/Thr- and Tyr phosphatases.  相似文献   

18.
19.
Increased oxidative stress has been associated with the pathogenesis of chronic cardiac hypertrophy and heart failure. Since allicin suppresses oxidative stress in vitro and in vivo, we hypothesized that allicin would inhibit cardiac hypertrophy through blocking oxidative stress-dependent signaling. We examined this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. Our results showed that allicin markedly inhibited hypertrophic responses induced by Ang II or pressure overload. The increased reactive oxygen species (ROS) generation and NADPH oxidase activity were significantly suppressed by allicin. Our further investigation revealed this inhibitory effect on cardiac hypertrophy was mediated by blocking the activation of ROS-dependent ERK1/2, JNK1/2 and AKT signaling pathways. Additional experiments demonstrated allicin abrogated inflammation and fibrosis by blocking the activation of nuclear factor-κB and Smad 2/3 signaling, respectively. The combination of these effects resulted in preserved cardiac function in response to cardiac stimuli. Consequently, these findings indicated that allicin protected cardiac function and prevented the development of cardiac hypertrophy through ROS-dependent mechanism involving multiple intracellular signaling.  相似文献   

20.
Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT‐generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5‐ to 6‐month‐old mice over‐expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus‐dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8‐hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over‐expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号