首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

2.
We have inferred the first empirically supported hypothesis of relationships for the cosmopolitan butterfly subfamily Satyrinae. We used 3090 base pairs of DNA from the mitochondrial gene COI and the nuclear genes EF-1alpha and wingless for 165 Satyrinae taxa representing 4 tribes and 15 subtribes, and 26 outgroups, in order to test the monophyly of the subfamily and elucidate phylogenetic relationships of its major lineages. In a combined analysis, the three gene regions supported an almost fully resolved topology, which recovered Satyrinae as polyphyletic, and revealed that the current classification of suprageneric taxa within the subfamily is comprised almost completely of unnatural assemblages. The most noteworthy findings are that Manataria is closely related to Melanitini; Palaeonympha belongs to Euptychiina; Oressinoma, Orsotriaena and Coenonympha group with the Hypocystina; Miller's (1968). Parargina is polyphyletic and its components group with multiple distantly related lineages; and the subtribes Elymniina and Zetherina fall outside the Satyrinae. The three gene regions used in a combined analysis prove to be very effective in resolving relationships of Satyrinae at the subtribal and tribal levels. Further sampling of the taxa closely related to Satyrinae, as well as more extensive sampling of genera within the tribes and subtribes for this group will be critical to test the monophyly of the subfamily and establish a stronger basis for future biogeographical and evolutionary studies.  相似文献   

3.
Peña, C., Nylin, S., Freitas, A. V. L. & Wahlberg, N. (2010). Biogeographic history of the butterfly subtribe Euptychiina (Lepidoptera, Nymphalidae, Satyrinae).—Zoologica Scripta, 39, 243–258. The diverse butterfly subtribe Euptychiina was thought to be restricted to the Americas. However, there is mounting evidence for the Oriental Palaeonympha opalina being part of Euptychiina and thus a disjunct distribution between it (in eastern Asia) and its sister taxon (in eastern North America). Such a disjunct distribution in both eastern Asia and eastern North America has never been reported for any butterfly taxon. We used 4447 bp of DNA sequences from one mitochondrial gene and four nuclear genes for 102 Euptychiina taxa to obtain a phylogenetic hypothesis of the subtribe, estimate dates of origin and diversification for major clades and perform a biogeographic analysis. Euptychiina originated 31 Ma in South America. Early Euptychiina dispersed from North to South America via the temporary connection known as GAARlandia during Eocene–Oligocene times. The current disjunct distribution of the Oriental Palaeonympha opalina is the result of a northbound dispersal of a lineage from South America into eastern Asia via North America. The common ancestor of Palaeonympha and its sister taxon Megisto inhabited the continuous forest belt across North Asia and North America, which was connected by Beringia. The closure of this connection caused the split between Palaeonympha and Megisto around 13 Ma and the severe extinctions in western North America because of the climatic changes of the Late Miocene (from 13.5 Ma onwards) resulted in the classic ‘eastern Asia and eastern North America’ disjunct distribution.  相似文献   

4.
The Euptychiina is one of the more diverse lineages of satyrine butterflies, represented by over 300 species. The first phylogenetic analyses of the subtribe is presented based on 2506 aligned nucleotide sequences obtained from 69 individuals spanning 28 ingroup genera and nine outgroup genera. Two genes were used, the mitochondrial gene cytochrome oxidase 1 (1268 bp) and the nuclear gene elongation factor-1alpha (1238 bp). The subtribe is never recovered as monophyletic in analyses using parsimony, maximum likelihood, or Bayesian inference. Several euptychiine genera are placed basal to the ingroup, but support is found only for Euptychia and Oressinoma. Three main lineages within the ingroup were clearly defined and many taxonomic groupings within the clades strongly supported. The majority of genera tested were paraphyletic or polyphyletic. Based on results presented here and novel host use, a close relationship of Euptychia to the Indo-Australian tribe Ragadiini is hypothesized. Origins of the group remain unclear, but the basal position of most of the Nearctic genera is discussed.  相似文献   

5.
乔枫  陈振宁  陈志  谢惠春  尚军  柯君 《昆虫知识》2014,51(1):127-138
【目的】为了探讨粉蝶科Pieridae 7属的系统进化关系。【方法】基于线粒体COⅠ(609 bp)和Cytb(393 bp)基因部分序列,以眼蝶科的2个物种为外类群,运用UPGMA和ME法重建分子系统树。【结果】联合基因构建的分子系统树显示:外群牧女珍眼蝶Coenonympha amaryllis(Cramer)和阿芬眼蝶Aphantopus hyperantu(Linnaeus)构成一独立支系,可以作为外群;云粉蝶属和粉蝶属姊妹关系构成一分支,亲缘关系较近;襟粉蝶属与钩粉蝶属形成姐妹关系,亲缘关系较近。【结论】成功重建了粉蝶科7属的系统进化关系。  相似文献   

6.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

7.
The mycalesine butterfly genus Heteropsis Westwood, 1850 (Satyrinae: Mycalesina) has recently been conceived to be represented in three major palaeotropical regions (Madagascar, Africa and Asia), but there has been no formal taxonomic treatment covering this entire group. Studies aimed at understanding the evolutionary success of Mycalesina in the Old World tropics have been hampered by the lack of both a robust phylogeny and a stable nomenclature for this satyrine subtribe. Here, we present a well‐supported molecular phylogeny based on 10 genes and 133 exemplar taxa, representing almost all known species groups of Heteropsis (s.l.), and including all but four known species in Madagascar. We also combine sequences of the exemplars with a morphological matrix of 428 characters. The widespread ‘Heteropsis clade’ is confirmed as monophyletic, but lineages in different geographic regions also form endemic and well‐supported clades with deep divergences among them. Here we establish this group as comprising three genera, Heteropsis (Malagasy region only), Telinga Moore, 1880 (Asia), and Brakefieldia gen.n. (Africa). We recover the genera Telinga and Brakefieldia as sisters with high support. Each genus is taxonomically characterized and a revised synonymic checklist is appended with new combinations and some changes in rank. With a well‐resolved topology and updates to the taxonomy of the group, researchers are now in a position to explore the drivers of the spectacular radiation of the group, notably in Madagascar, where the highest phenotypic and species diversity occurs. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:AAF9F440‐A2D6‐4483‐BF35‐9BC074D9D29B .  相似文献   

8.
《Systematic Entomology》2018,43(4):798-809
The origins, evolutionary history and diversification of the Australian butterfly fauna are poorly known and uncertain. Two competing hypotheses have been proposed to explain the occurrence of butterflies on this isolated continental landmass. The common view is that all Australian butterflies entered the continent relatively recently from the northern hemisphere via Southeast Asia and/or mainland New Guinea (i.e. northern dispersal origin hypothesis). The alternative view is that part or all of the Australian butterfly fauna ultimately evolved in remnant or Southern Gondwana when Australia was connected to South America through Antarctica (i.e. Southern Gondwanan origin hypothesis). However, robust phylogenies with strong support for monophyly are lacking for the majority of Australian endemic butterfly lineages, thereby precluding determination of their systematic relationships and hence their geographic origins. Here, we use molecular data to reconstruct phylogenetic relationships of the globally distributed butterfly subtribe Coenonymphina (Satyrinae: Satyrini). This group represents a major component of the butterfly fauna of the wider Australasian region, with 19 genera and 71 species endemic to the region. Dating estimates extrapolated from secondary calibration sources indicate that the subtribe arose c . 48 Ma (95% credibility interval, 52–42 Ma), and the crown group first diverged in the Eocene (c . 44 Ma, 95% credibility interval 51–37 Ma). Rapid speciation events subsequently followed around the Eocence–Oligocene boundary, resulting in a near‐hard polytomy comprising short basal branches with nodes that are difficult to resolve. Based on strongly supported phylogenetic relationships and estimates of divergence times, we conclude that the group probably had its origin in the fragment of Southern Gondwana consisting of Australia, Antarctica and South America. However, we are unable to rule out the northern dispersal scenario, particularly as Coenonymphina are closely related to a set of predominantly Asian lineages. Dispersal and extinction events following the final break‐up of Gondwana have played a pivotal role in shaping the extant distributions of the group.  相似文献   

9.
The taxonomy of Lomechusini Fleming has a complex history. Recent studies have shown that this group is polyphyletic; however, little is known about the evolutionary interrelationships among its constituent genera. The goals of the present study are to infer the phylogenetic relationships of Falagonia Sharp and closely related genera; to define the boundaries of those genera based on synapomorphic characters; and to explore the evolution of myrmecophily within the lineage. The phylogenetic analyses are based exclusively on morphological characters of adults. A total of 36 operational taxonomic units were used for the analysis. The best trees were selected based on maximum parsimony and Bayesian inference. During the parsimony reconstruction, different weighting strategies were used to recover the most robust phylogenetic hypothesis. Although minor differences were observed in the results of the different analyses, the topologies were consistent throughout. Several groups of genera proposed by Seevers (1965), such as the ‘Tetradonia’ and ‘Ecitopora’ groups, were not recovered. Thus, these may represent nonmonophyletic groups that were based on nonsynapomorphic diagnostic characters. Our analyses consistently recovered the genera Asheidium Santiago‐Jiménez, Delgadoidium Santiago‐Jiménez, Falagonia, Newtonidium Santiago‐Jiménez, Pseudofalagonia Santiago‐Jiménez, Sharpidium Santiago‐Jiménez, Tetradonia Wasmann and Thayeridium Santiago‐Jiménez, forming a monophyletic group that we have called the ‘Asheidium complex’. Falagonia mexicana Sharp shows seven autapomorphies, none of which were used to establish the genus. Based on the phylogenetic results, myrmecophily has evolved independently at least three times within the lineage. This study, based on morphological characters, is one of the first approaches towards gaining an understanding of the phylogenetic relationships within the polyphyletic tribe Lomechusini.  相似文献   

10.
11.
COX, P. A. & HUMPHRIES, C. J. 1992. Hydrophilous pollination and breeding system evolution in seagrasses: a phylogenetic approach to the evolutionary ecology of the Cymodoceaceae. A phylogenetic analysis of seagrasses of the Cymodoceaceae shows the Cymodoceaceae to be monophyletic and Posidoniaceae to be their sister group. Information on the pollination ecologies and breeding systems of the various genera of the Cymodoceaceae were plotted onto the consensus tree obtained for the group. From this analysis, it is suggested that the clade composed of the Zosteraceae, Posidoniaceae and Cymodoceaceae evolved from a freshwater hydrophilous ancestor that developed submarine pollination and filiform pollen in association with invasion of the marine environment. Dioecism and surface pollination appear to have evolved in the progenitor of the Cymodoceaceae, and hence the seagrasses of the Cymodoceaceae are dioecious due to common descent rather than to convergent evolutionary processes in extant genera.  相似文献   

12.
Based on a Wagner tree analysis of ninety-two characters (eighty-five larval, one egg, six adult), the nymphalid butterfly genera Antirrhea and Caerois are demonstrated to be the closest relatives of the genus Morpho . Accordingly, Antirrhea and Caerois are formally transferred from the Satyrinae to the Morphinae. Without these two genera, the Morphinae ( sensu Ehrlich) is at best a paraphyletic group. During the study, fourteen nymphalid genera were treated as potential outgroups. The analysis suggests that many currently accepted higher taxa within the Nymphalidae are probably untenable: the Satyrinae and Nymphalinae ( sensu Ehrlich) are both probably polyphyletic; the Biinae ( sensu Miller) must be abandoned, being polyphyletic; the Charaxidae ( sensu Rydon), although probably monophyletic, appear to form a group subordinate to part of the 'Satyrinae'; and Apatura does not cluster with the 'Nymphalinae', but appears to form the sister-group of the 'Satyrinae' (less Antirrhea and Caerois ) plus the Charaxinae. Re-analyses of reduced data sets, in which potentially homoplasious larval head-horn and adult wing venational characters were eliminated, leaves these conclusions essentially unaltered. The authors suggest that a solution to the seemingly intractable problem posed by nymphalid higher classification can be sought by the application of cladistic analysis to a large data set gathered from all developmental stages, with special emphasis on detailed comparative larval morphology.  相似文献   

13.
This study uses phylogeny‐based measures of evolutionary potential (phylogenetic diversity and community structure) to evaluate the evolutionary value of vascular plant genera endemic to Chile. Endemicity is regarded as a very important consideration for conservation purposes. Taxa that are endemic to a single country are valuable conservation targets, as their protection depends upon a single government policy. This is especially relevant in developing countries in which conservation is not always a high resource allocation priority. Phylogeny‐based measures of evolutionary potential such as phylogenetic diversity (PD) have been regarded as meaningful measures of the “value” of taxa and ecosystems, as they are able to account for the attributes that could allow taxa to recover from environmental changes. Chile is an area of remarkable endemism, harboring a flora that shows the highest number of endemic genera in South America. We studied PD and community structure of this flora using a previously available supertree at the genus level, to which we added DNA sequences of 53 genera endemic to Chile. Using discrepancy values and a null model approach, we decoupled PD from taxon richness, in order to compare their geographic distribution over a one‐degree grid. An interesting pattern was observed in which areas to the southwest appear to harbor more PD than expected by their generic richness than those areas to the north of the country. In addition, some southern areas showed more PD than expected by chance, as calculated with the null model approach. Geological history as documented by the study of ancient floras as well as glacial refuges in the coastal range of southern Chile during the quaternary seem to be consistent with the observed pattern, highlighting the importance of this area for conservation purposes.  相似文献   

14.
Phylogenetic relationships among genera of the Tetrabothriidae (Eucestoda)   总被引:1,自引:0,他引:1  
Cladistic analysis of the generic-level relationships within the family Tetrabothriidae was conducted. A single cladogram resulted from evaluation of 28 homologous transformation series representing 41 character states. The genus Tetrabothrius was recognized as plesiomorphic followed by Chaetophallus and Trigonocotyle. The latter was considered as the sister group for the remaining tetrabothriid genera of marine mammals. Anophryocephalus, Strobilocephalus, and Priapocephalus are among the most highly derived genera and are postulated as having close evolutionary affinities. Comparisons to previous explicit hypotheses for relationships among the genera indicated the present analysis was the most efficient phylogenetic statement (consistency index = 85.4%) for the 28 attributes evaluated. The recognition of Tetrabothrius as primitive and a natural grouping of Anophryocephalus, Strobilocephalus, and Priapocephalus in part confirmed results of previous studies of the Tetrabothriidae.  相似文献   

15.
A new genus and species of Euptychiina (Satyrinae), Cristalinaia vitoria Mota, Zacca & Freitas gen. et sp. nov., is described based on three specimens collected in the region of the Cristalino River, Alta Floresta, Mato Grosso, Brazil. This rare species is known only from this region, where it flies inside the dense bamboo patches typical of that area. The last instar larva and the pupa are described; the larva was observed feeding on mature leaves of the common bamboo Guadua aff. paniculata Munro.urn:lsid:zoobank.org:pub:D61EDE8D-CAE9-41C6-B24D-BB789873566E  相似文献   

16.
The infraorder Furnariides is a diverse group of suboscine passerine birds comprising a substantial component of the Neotropical avifauna. The included species encompass a broad array of morphologies and behaviours, making them appealing for evolutionary studies, but the size of the group (ca. 600 species) has limited well-sampled higher-level phylogenetic studies. Using DNA sequence data from the nuclear RAG-1 and RAG-2 exons, we undertook a phylogenetic analysis of the Furnariides sampling 124 (more than 88%) of the genera. Basal relationships among family-level taxa differed depending on phylogenetic method, but all topologies had little nodal support, mirroring the results from earlier studies in which discerning relationships at the base of the radiation was also difficult. In contrast, branch support for family-rank taxa and for many relationships within those clades was generally high. Our results support the Melanopareidae and Grallariidae as distinct from the Rhinocryptidae and Formicariidae, respectively. Within the Furnariides our data contradict some recent phylogenetic hypotheses and suggest that further study is needed to resolve these discrepancies. Of the few genera represented by multiple species, several were not monophyletic, indicating that additional systematic work remains within furnariine families and must include dense taxon sampling. We use this study as a basis for proposing a new phylogenetic classification for the group and in the process erect new family-group names for clades having high branch support across methods.  相似文献   

17.
Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates.  相似文献   

18.
19.
The nucleotide variation and structural patterns of mitochondrial RNA molecule have been proposed as useful tools in molecular systematics; however, their usefulness is always subject to a proper assessment of homology in the sequence alignment. The present study describes the secondary structure of mitochondrial tRNA for the amino acid serine (UCN) on 13 Euptychiina species and the evaluation of its potential use for evolutionary studies in this group of butterflies. The secondary structure of tRNAs showed variation among the included species except between Hermeuptychia sp1 and sp2. Variation was concentrated in the ribotimidina-pseudouridine-cystosine (TψC), dihydrouridine (DHU) and variable loops and in the DHU and TψC arms. These results suggest this region as a potential marker useful for taxonomic differentiation of species in this group and also confirm the importance of including information from the secondary structure of tRNA to optimize the alignments.  相似文献   

20.
Ecological studies are increasingly considering phylogenetic relationships among species. The phylogeny is used as a proxy or filter to improve statistical tests and retain evolutionary elements, such as niche conservation. We used the phylogenetic topology to improve the model for occurrence of Trichoptera genera in Cerrado (Brazilian Savanna) streams. We tested whether parameters generated by logistic models of occurrence, using phylogenetic signals, are better than models generated without phylogenetic information. We used a model with Bayesian updating to examine the influence of stream water pH and phylogenetic relationship among genera on the occurrence of Trichoptera genera. Then, we compared this model with the logistic model for each Trichoptera genus. The probability of occurrence of most genera increased with water pH, and the phylogeny‐based explicit logistic model improved the parameters estimated for observed genera. The inferred relationship between genera occurrence and stream pH improved, indicating that phylogeny adds relevant information when estimating ecological responses of organisms. Water with elevated acidity (low pH values) may be restrictive for the occurrence of Trichoptera larvae, especially if the regional streams exhibit neutral to alkaline water, as is observed in the Cerrado region. Using phylogeny‐based modeling to predict species occurrence is a prominent opportunity to extend our current statistical framework based on environmental conditions, as it enables a more precise estimation of ecological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号