首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Im SH  Lee J 《FEBS letters》2003,554(3):455-461
Many protein components of telomeres, the multifunctional DNA-protein complexes at the ends of eukaryotic chromosomes, have been identified in diverse species ranging from yeast to humans. In Caenorhabditis elegans, CEH-37 has been identified by a yeast one hybrid screen to be a double-stranded telomere-binding protein. However, the role of CEH-37 in telomere function is unclear because a deletion mutation in this gene does not cause severe telomere defects. This observation raises the possibility of the presence of genetic redundancy. To identify additional double-stranded telomere-binding proteins in C. elegans, we used a different approach, namely, a proteomic approach. Affinity chromatography followed by Finnigan LCQ ion trap mass spectrometer analysis allowed us to identify several candidate proteins. We further characterized one of these, HMG-5, which is encoded by F45E4.9. HMG-5 bound to double-stranded telomere in vitro as shown by competition assays. At least two telomeric DNA repeats were needed for this binding. HMG-5 was expressed in the nuclei of the oocytes and all embryonic cells, but not in the hatched larvae or adults. HMG-5 mainly localized to the chromosomal ends, indicating that HMG-5 also binds to telomeres in vivo. These observations suggest that HMG-5 may participate, together with CEH-37, in early embryogenesis by acting at the telomeres.  相似文献   

2.
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.  相似文献   

3.
Here we identify a new regulator of endocytosis called RME-6. RME-6 is evolutionarily conserved among metazoans and contains Ras-GAP (GTPase-activating protein)-like and Vps9 domains. Consistent with the known catalytic function of Vps9 domains in Rab5 GDP/GTP exchange, we found that RME-6 binds specifically to Caenorhabditis elegans RAB-5 in the GDP-bound conformation, and rme-6 mutants have phenotypes that indicate low RAB-5 activity. However, unlike other Rab5-associated proteins, a rescuing green fluorescent protein (GFP)-RME-6 fusion protein primarily localizes to clathrin-coated pits, physically interacts with alpha-adaptin, a clathrin adaptor protein, and requires clathrin to achieve its cortical localization. In rme-6 mutants, transport from the plasma membrane to endosomes is defective, and small 110-nm endocytic vesicles accumulate just below the plasma membrane. These results suggest a mechanism for the activation of Rab5 in clathrin-coated pits or clathrin-coated vesicles that is essential for the delivery of endocytic cargo to early endosomes.  相似文献   

4.
We have characterized the organization of the genes coding for 18 S, 5·8 S and 26 S ribosomal RNAs in the nematode Caenorhabditis elegans. These ribosomal genes, present in about 55 copies per haploid genome, alternate in a repeating tandem array. The repeating unit is only 7000 base-pairs, containing a non-transcribed spacer of no more than 1000 base-pairs. Most of the repeating units have identical restriction maps, but one repeat contains a deletion of 2900 base-pairs, which eliminates all or part of the 18 S coding region. We have found no difference in the major ribosomal DNA restriction endonuclease cleavage patterns between two interbreeding strains of C. elegans, but found differences between C. elegans and the closely related Caenorhabditis briggsae.  相似文献   

5.
6.
The gon-4 gene is required for gonadogenesis in the nematode Caenorhabditis elegans. Normally, two precursor cells, Z1 and Z4, follow a reproducible pattern of cell divisions to generate the mature somatic gonadal structures (e.g., uterus in hermaphrodites, vas deferens in males). In contrast, in gon-4 mutants, the Z1/Z4 cell lineages are variably aborted in both hermaphrodites and males: Z1 and Z4 divide much later than normal and subsequent divisions are either absent or severely delayed. In gon-4 adults, normal somatic gonadal structures are never observed, and germ-line and vulval tissues, which depend on somatic gonadal cues for their development, are also aberrant. In contrast, nongonadal tissues and the timing of other developmental events (e.g., molts) appear to be normal in gon-4 mutants. The gon-4 alleles are predicted to be strong loss-of-function or null alleles by both genetic and molecular criteria. We have cloned gon-4 in an attempt to learn how it regulates gonadogenesis. The gon-4 gene encodes a novel, acidic protein. A GON-4::GFP fusion protein, which rescues a gon-4 mutant to fertility, is expressed in somatic gonadal cells during early gonadal development. Furthermore, this fusion protein is nuclear. We conclude that gon-4 is a regulator of the early lineage of Z1 and Z4 and suggest that it is a part of a genetic program common to the regulation of both hermaphrodite and male gonadogenesis.  相似文献   

7.
Mori C  Takanami T  Higashitani A 《Genetics》2008,180(1):681-686
Here we show that inactivation of the ATR-related kinase ATL-1 results in a significant reduction in mitochondrial DNA (mtDNA) copy numbers in Caenorhabditis elegans. Although ribonucleotide reductase (RNR) expression and the ATP/dATP ratio remained unaltered in atl-1 deletion mutants, inhibition of RNR by RNAi or hydroxyurea treatment caused further reductions in mtDNA copy number. These results suggest that ATL-1 functions to maintain mtDNA independently of RNR.  相似文献   

8.
The C. elegans lipase-like 5 (lipl-5) gene is predicted to code for a lipase homologous to the human gastric acid lipase. Its expression was previously shown to be modulated by nutritional or immune cues, but nothing is known about its impact on the lipid landscape and ensuing functional consequences. In the present work, we used mutants lacking LIPL-5 protein and found that lipl-5 is important for normal lipidome composition as well as its remodeling in response to food deprivation. Particularly, lipids with signaling functions such as ceramides and mitochondrial lipids were affected by lipl-5 silencing. In comparison with wild type worms, animals lacking LIPL-5 were enriched in cardiolipins linked to polyunsaturated C20 fatty acids and coenzyme Q-9. Differences in mitochondrial lipid composition were accompanied by differences in mitochondrial activity as mitochondria from well-fed lipl-5 mutants were significantly more able to oxidize respiratory substrates when compared with mitochondria from well-fed wild type worms. Strikingly, starvation elicited important changes in mitochondrial activity in wild type worms, but not in lipl-5 worms. This indicates that this lipase is a determinant of mitochondrial functional remodeling in response to food withdrawal.  相似文献   

9.
DNA glycosylases acting upon uracil- or 3-methyl-adenine-containing DNA have been detected in the sonic extracts of the nematode, Caenorhabditis elegans. 4 types of the asynchronously-growing worms, embryos obtained from gravid hermaphrodites, aseptically-hatched larvae, or dauer larvae. Uracil-DNA glcosylase activity was found in all 4 types of the extracts, and the activity was highest in the embryonic extract. In contrast, 3-methyladenine-DNA glycosylase activity was undetectable in the embryonic extract, while an equal level of activity was found in the other 3 types of the extracts. The results substantiate the ubiquity of base-excision repair in various organisms, and suggest that some of the repair functions may be developmentally regulated in multicellular animals.  相似文献   

10.
Caenorhabditis elegans possesses two p97/VCP/Cdc48p homologues, named CDC-48.1 (C06A1.1) and CDC-48.2 (C41C4.8), and their expression patterns and levels are differently regulated. To clarify the regulatory mechanisms of differential expression of two p97 proteins of C. elegans, we performed detailed deletion analysis of their promoter regions. We found that the promoter of cdc-48.1 contains two regions necessary for embryonic and for post-embryonic expression, while the promoter of cdc-48.2 contains the single region necessary for embryonic expression. In particular, two elements (Element A and Element B) and three conserved boxes (Box a, Box b and Box c) were essential for cdc-48.1 expression in embryos and at post-embryonic stages, respectively. By using South-Western blotting and MALDI-TOF MS analysis, we identified HMG-12 and CAR-1 as proteins that bind to Element A and Element B, respectively, from the embryonic nuclear extract. Importantly, we found the decreased expression of p97 in embryos prepared from hmg-12(RNAi) or car-1(RNAi) worms. These results indicate that both HMG-12 and CAR-1 play important roles in embryonic expression of cdc-48.1.  相似文献   

11.
Extrachromosomal DNA transformation of Caenorhabditis elegans.   总被引:15,自引:1,他引:14       下载免费PDF全文
DNA was introduced into the germ line of the nematode Caenorhabditis elegans by microinjection. Approximately 10% of the injected worms gave rise to transformed progeny. Upon injection, supercoiled molecules formed a high-molecular-weight array predominantly composed of tandem repeats of the injected sequence. Injected linear molecules formed both tandem and inverted repeats as if they had ligated to each other. No worm DNA sequences were required in the injected plasmid for the formation of these high-molecular-weight arrays. Surprisingly, these high-molecular-weight arrays were extrachromosomal and heritable. On average 50% of the progeny of a transformed hermaphrodite still carried the exogenous sequences. In situ hybridization experiments demonstrated that approximately half of the transformed animals carried foreign DNA in all of their cells; the remainder were mosaic animals in which some cells contained the exogenous sequences while others carried no detectable foreign DNA. The presence of mosaic and nonmosaic nematodes in transformed populations may permit detailed analysis of the expression and function of C. elegans genes.  相似文献   

12.
13.
14.
Mitochondria lack the ability to repair certain helix-distorting lesions that are induced at high levels in mitochondrial DNA (mtDNA) by important environmental genotoxins and endogenous metabolites. These lesions are irreparable and persistent in the short term, but their long-term fate is unknown. We report that removal of such mtDNA damage is detectable by 48 h in Caenorhabditis elegans, and requires mitochondrial fusion, fission and autophagy, providing genetic evidence for a novel mtDNA damage removal pathway. Furthermore, mutations in genes involved in these processes as well as pharmacological inhibition of autophagy exacerbated mtDNA damage-mediated larval arrest, illustrating the in vivo relevance of removal of persistent mtDNA damage. Mutations in genes in these pathways exist in the human population, demonstrating the potential for important gene-environment interactions affecting mitochondrial health after genotoxin exposure.  相似文献   

15.
16.
Chen J  Li X  Greenwald I 《Genetics》2004,166(1):151-160
Suppressor genetics in C. elegans has identified key components of the LIN-12/Notch signaling pathway. Here, we describe a genetic and molecular characterization of the suppressor gene sel-7. We show that reducing or eliminating sel-7 activity suppresses the effects of constitutive lin-12 activity, enhances the effects of partially reduced lin-12 activity, and causes a synthetic Lin-12(0) phenotype when combined with a null mutation in the sel-12 presenilin gene. These observations suggest that sel-7 is a positive regulator of lin-12 activity. We also show that SEL-7 encodes a novel nuclear protein. Through yeast two-hybrid screening, we identified an apparent interaction partner, K08E3.8, that also interacts with SEL-8, a known component of the nuclear complex that forms upon LIN-12 activation. Our data suggest potential roles for SEL-7 in the assembly or function of this nuclear complex.  相似文献   

17.
《遗传学报》2020,47(3):145-156
Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol,defects in which may lead to hyperargininemia,a devastating developmental disorder.It is largely unknown if defective arginine catabolism has any effects on mitochondria.Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditis elegans.Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate(ATP) production in C elegans hypodermal cells.ARGN-1 localizes to mitochondria and its loss causes arginine accumulation,which disrupts mitochondrial dynamics.Heterologous expression of human ARGl or ARG2 rescued the mitochondrial defects of argn-1 mutants.Importantly,genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations.These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.  相似文献   

18.
We demonstrate biochemically that the genes identified by sequence similarity as orthologs of the mitochondrial import machinery are functionally conserved in Caenorhabditis elegans. Specifically, tin-9.1 and tin-10 RNA interference (RNAi) treatment of nematodes impairs import of the ADP/ATP carrier into isolated mitochondria. Developmental phenotypes are associated with gene knock-down of the mitochondrial import components. RNAi of tomm-7 and ddp-1 resulted in mitochondria with an interconnected morphology in vivo, presumably due to defects in the assembly of outer membrane fission/fusion components. RNAi of the small Tim proteins TIN-9.1, TIN-9.2, and TIN-10 resulted in a small body size, reduced number of progeny produced, and partial embryonic lethality. An additional phenotype of the tin-9.2(RNAi) animals is defective formation of the somatic gonad. The biochemical demonstration that the protein import activity is reduced, under the same conditions that yield the defects in specific tissues and lethality in a later generation, suggests that the developmental abnormalities observed are a consequence of defects in mitochondrial inner membrane biogenesis.  相似文献   

19.
The Caenorhabditis elegans sex determination gene, tra-2, is translationally regulated by elements in the 3'-untranslated region called TGEs. TGEs govern the translation of mRNAs in both invertebrates and vertebrates, indicating that this is a highly conserved mechanism for controlling gene activity. A factor called DRF, found in worm extracts binds the TGEs and may be a repressor of translation. Using the yeast three-hybrid screen and RNA gel shift analysis, we have found that the protein GLD-1, a germline-specific protein and a member of the STAR family of RNA-binding proteins, specifically binds to the TGEs. GLD-1 is essential for oogenesis, and is also necessary for spermatogenesis and inhibition of germ cell proliferation. Several lines of evidence demonstrate that GLD-1 is a translational repressor acting through the TGEs to repress tra-2 translation. GLD-1 can repress the translation of reporter RNAs via the TGEs both in vitro and in vivo, and is required to maintain low TRA-2A protein levels in the germline. Genetic analysis indicates that GLD-1 acts upstream of the TGE control. Finally, we show that endogenous GLD-1 is a component of DRF. The conservation of the TGE control and the STAR family suggests that at least a subset of STAR proteins may work through the TGEs to control translation.  相似文献   

20.
Several bioinformatics studies have identified an unexpected but remarkably prevalent ~10 bp periodicity of AA/TT dinucleotides (hyperperiodicity) in certain regions of the Caenorhabditis elegans genome. Although the relevant C.elegans DNA segments share certain sequence characteristics with bent DNAs from other sources (e.g. trypanosome mitochondria), the nematode sequences exhibit a much more extensive and defined hyperperiodicity. Given the presence of hyperperiodic structures in a number of critical C.elegans genes, the physical characteristics of hyperperiodic DNA are of considerable interest. In this work, we demonstrate that several hyperperiodic DNA segments from C.elegans exhibit structural anomalies using high-resolution atomic force microscopy (AFM) and gel electrophoresis. Our quantitative analysis of AFM images reveals that hyperperiodic DNA adopts a significantly smaller mean square end-to-end distance, hence a more compact coil structure, compared with non-periodic DNA of similar length. While molecules remain capable of adopting both bent and straight (rod-like) configurations, indicating that their flexibility is still retained, examination of the local curvatures along the DNA contour length reveals that the decreased mean square end-to-end distance can be attributed to the presence of long-scale intrinsic bending in hyperperiodic DNA. Such bending is not detected in non-periodic DNA. Similar studies of shorter, nucleosome-length DNAs that survived micrococcal nuclease digestion show that sequence hyperperiodicity in short segments can likewise induce strong intrinsic bending. It appears, therefore, that regions of the C.elegans genome display a significant correlation between DNA sequence and unusual mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号