首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructural localization of the alpha-subunit of Na+,K+-ATPase on the lateral wall of rat cochlear duct was investigated quantitatively by the protein A-gold method, using affinity-purified antibody against the alpha-subunit of rat kidney Na+,K+-ATPase. In the stria vascularis, gold particles were sparse over the endolymphatic luminal surface of the marginal cells but were numerous over the basolateral membrane. The labeling density of the basolateral membrane was almost equal to that of the same domain of the distal tubule cells of kidney. The intermediate cells were studded with a large number of gold particles on the plasma membrane domain facing the basolateral domain of the marginal cells. On the luminal surfaces of the other epithelial cells, including those of Reissner's membrane, no significant amount of gold particles was found. Many gold particles were localized on all the plasma membranes of the spiral prominence stromal cells and on the intracellular membrane domain of the external sulcus cells.  相似文献   

2.
We have previously demonstrated that Na+, K(+)-ATPase activity is present in both differentiated plasma membranes from Electrophorus electricus (L.) electrocyte. Considering that the alpha subunit is responsible for the catalytic properties of the enzyme, the aim of this work was to study the presence and localization of alpha isoforms (alpha1 and alpha2) in the electrocyte. Dose-response curves showed that non-innervated membranes present a Na+, K(+)-ATPase activity 2.6-fold more sensitive to ouabain (I50=1.0+/-0.1 microM) than the activity of innervated membranes (I50=2.6+/-0.2 microM). As depicted in [3H]ouabain binding experiments, when the [3H]ouabain-enzyme complex was incubated in a medium containing unlabeled ouabain, reversal of binding occurred differently: the bound inhibitor dissociated 32% from Na+, K(+)-ATPase in non-innervated membrane fractions within 1 h, while about 50% of the ouabain bound to the enzyme in innervated membrane fractions was released in the same time. These data are consistent with the distribution of alpha1 and alpha2 isoforms, restricted to the innervated and non-innervated membrane faces, respectively, as demonstrated by Western blotting from membrane fractions and immunohistochemical analysis of the main electric organ. The results provide direct evidence for a distinct distribution of Na+, K(+)-ATPase alpha-subunit isoforms in the differentiated membrane faces of the electrocyte, a characteristic not yet described for any polarized cell.  相似文献   

3.
We investigated quantitatively the ultrastructural localization of the alpha-subunit of Na+,K(+)-ATPase in rat retinal pigment epithelial cells by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha- and alpha(+)-subunits of Na+,K(+)-ATPase in the whole retina [the sensory retina plus retinal pigment epithelium (RPE)]. Rat eyes were fixed by perfusion with 4% paraformaldehyde containing 1% glutaraldehyde and embedded in Lowicryl K4M. Ultra-thin sections were incubated with affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase and subsequently with protein A-gold complex. Light microscopy with a silver enhancement procedure revealed Na+,K(+)-ATPase localized to both the apical and the basal plasma membrane domains of the RPE. Quantitative immunocytochemical analysis by electron microscopy showed a higher density of gold particles on the apical surface than on the basolateral one. Microvilli are so well developed on the apical surface of the RPE that the apical surface profile is much longer than the basolateral one. This means that Na+,K(+)-ATPase is mainly located on the apical surface of the RPE cells.  相似文献   

4.
Ultrastructural localization of Na+,K+-ATPase in rat ciliary epithelium was investigated quantitatively by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of Na+,K+-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha-subunit of Na+,K+-ATPase in the ciliary body. Gold particles were found mainly on the basolateral surfaces of both the pigmented epithelial (PE) and nonpigmented epithelial (NPE) cells with an approximately twofold higher labeling density in the PE cells. A few gold particles were also found on the apical and ciliary channel surfaces of the PE cells, whereas no significant binding was found on the apical surfaces of the NPE cells. The basolateral surfaces of PE and NPE cells are markedly infolded and are much greater in area than the apical surfaces. This means that Na+,K+-ATPase is almost exclusively located on the basolateral surfaces of both the NPE and PE cells. We suggest that the Na+,K+-ATPase of both the NPE and PE cells play an important role in the formation of aqueous humor.  相似文献   

5.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
Summary To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the -subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the -subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.Supported by Grant AM 17047 from NIH and by the Veterans Administration  相似文献   

6.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1:200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the alpha-subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the beta-subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.  相似文献   

7.
Na+,K(+)-ATPase activities in macroscopically unchanged mucosa (conditionally normal tissue) and human colorectal carcinoma (mainly low-grade and moderately differentiated adenocarcinomas) have been investigated. Microsomal fractions are similar by dimensions of the membrane fragments detected by photon correlation spectroscopy analysis. The activation optima under digitonin pretreatment of the membrane fractions differ significantly for Na+,K(+)-ATPase and concomitant Mg(2+)-ATPase activity, but are the same in conditionally normal and cancerous tissues. This allows to detect correctly total levels of the Na+,K(+)-ATPase activity in the detergent-pretreated preparations. The moderate decrease of the Na+,K(+)-ATPase activity is revealed in carcinomas. It is concluded that a decrease of activity of the ouabain-sensitive human Na+,K(+)-ATPase is characteristic of colorectal carcinoma.  相似文献   

8.
We tested the hypothesis that the adenylate cyclase system and Na+, K(+)-ATPase are reciprocally related in rat pancreatic islets. We studied the effect of theophylline, caffeine, and dibutyryl cyclic AMP on Na+, K(+)-ATPase activity in a membrane preparation from collagenase-isolated rat islets. Theophylline, caffeine, or dibutyryl cyclic AMP, in concentrations of 1 mM, all inhibited Na+, K(+)-ATPase activity (44,62, and 43%, respectively). Kinetic analysis indicated that theophylline and dibutyryl cAMP inhibit Na+, K(+)-ATPase by different mechanisms; theophylline decreased Vmax and decreased apparent Km (ATP), whereas dibutyryl cAMP decreased Vmax and increased apparent Km (ATP). Similar inhibition of Na+, K(+)-ATPase by theophylline or dibutyryl cAMP was noted in a particulate fraction from rat kidney and in a purified porcine brain Na+, K(+)-ATPase preparation. The adenylate cyclase system and Na+, K(+)-ATPase may act reciprocally in pancreatic islets and in other tissues. In the beta cell this relationship may be essential in coordinating consumption of ATP in the stimulated, as opposed to the rest, state.  相似文献   

9.
G E Shull  J Greeb  J B Lingrel 《Biochemistry》1986,25(25):8125-8132
Rat brain and kidney cDNA libraries were constructed and screened with a cDNA insert corresponding to the mRNA for the sheep kidney Na+,K+-ATPase catalytic subunit. The alpha-subunit cDNAs isolated from the kidney library were derived from a single class of messenger RNA, and the brain cDNAs were derived from three classes of messenger RNA. The most abundant brain cDNA, which spans 5.1 kilobases, encodes the alpha(+) form of the enzyme. The second most abundant brain cDNA, which spans 3.65 kilobases, is identical with that of the kidney form and therefore encodes the alpha isoform. The third class of cDNA, which spans 3.55 kilobases, was present at low abundance and encodes an isoform of the alpha-subunit, designated alpha III, which has not been identified previously. The complete nucleotide sequence and deduced amino acid sequence for each of the brain and kidney cDNAs have been determined. In addition, we have identified a lysine-rich sequence that may function as a movable, ion-selective gate during cation binding and occlusion and have also identified several amino acid sequence variations that appear to explain some of the well-known species and tissue differences in cardiac glycoside sensitivity.  相似文献   

10.
Conditions have been established which allow growth of embryonic rat retinal cells in dissociated cell culture for up to one month. Na+,K+-ATPase localization was stuied in both neuronal and mixed neuronal-glial (flat cell) cultures. High Na+,K+-ATPase-like-immunoreactivity was associated with plasma membranes of neuronal cell bodies and their processes. Markedly lower immunoreactivity was found in the underlying flat cells in mixed cultures. Staining was generally uniform over perikaryal plasma membranes and showed a bead-like appearance in neuronal processes, supporting previous studies in brain tissue which used histocytochemical procedures specific for the Na+,K+-ATPase. This system should be useful for examining distribution of the enzyme in developing nerve and glial cells and may help to resolve questions regarding Na+–K+ homeostasis by neurons and glia.Dedicated to Henry McIlwain.  相似文献   

11.
Na+,K(+)-ATPase is a ubiquitous plasmalemmal membrane protein essential for generation and maintenance of transmembrane Na+ and K+ gradients in virtually all animal cell types. Activity and polarized distribution of renal Na+,(+)-ATPase appears to depend on connection of ankyrin to the spectrin-based membrane cytoskeleton as well as on association with actin filaments. In a previous study we showed copurification and codistribution of renal Na+,K(+)-ATPase not only with ankyrin, spectrin and actin, but also with two further peripheral membrane proteins, pasin 1 and pasin 2. In this paper we show by sequence analysis through mass spectrometry as well as by immunoblotting that pasin 2 is identical to moesin, a member of the FERM (protein 4.1, ezrin, radixin, moesin) protein family, all members of which have been shown to serve as cytoskeletal adaptor molecules. Moreover, we show that recombinant full-length moesin as well as its FERM domain bind to Na+,K(+)-ATPase and that this binding can be inhibited by an antibody specific for the ATPase activity-containing cytoplasmic loop (domain 3) of the Na+,K(+)-ATPase alpha-subunit. This loop has been previously shown to be a site essential for ankyrin binding. These observations indicate that moesin might not only serve as direct linker molecule of Na+,K(+)-ATPase to actin filaments but also modify ankyrin binding at domain 3 of Na+,K(+)-ATPase in a way similar to protein 4.1 modifying the binding of ankyrin to the cytoplasmic domain of the erythrocyte anion exchanger (AE1).  相似文献   

12.
Na+,K+-ATPase was localized at the ultrastructural level in rat and rabbit kidney medulla. The cytochemical method for the K+-dependent phosphatase component of the enzyme, using p-nitrophenylphosphate (NPP) as substrate, was employed to demonstrate the distribution of Na+, K+- ATPase in tissue-chopped sections from kidneys perfusion-fixed with 1% paraformaldehyde-0.25% glutaraldehyde. In other outer medulla of rat kidney, ascending thick limbs (MATL) were sites of intense K+-dependent NPPase (K+-NPPase) activity, whereas descending thick limbs and collecting tubules were barely reactive. Although descending thin limbs (DTL) of short loop nephrons were unstained, DTL from long loop nephrons in outer medulla were sites of moderate K+-NPPase activity. In rat inner medulla, DTL and ascending thin limbs (ATL) were unreactive for K+-NPPase. In rabbit medulla, only MATL were sites of significant K+-NPPase activity. The specificity of the cytochemical localization of Na+,K+-ATPase at reactive sites in rat and rabbit kidney medulla was demonstrated by K+-dependence of reaction product deposition, localization of reaction product (precipitated phosphate hydrolyzed from NPP) to the cytoplasmic side of basolateral plasma membranes, insensitivity of the reaction to inhibitors of nonspecific alkaline phosphatase, and, in the glycoside-sensitive rabbit kidney, substantial inhibition of staining by ouabain. The observed pattern of distribution of the sodium transport enzyme in kidney medulla is particularly relevant to current models for urine concentration. The presence of substantial Na+,K+-ATPase in MATL is consistent with the putative role of this segment as the driving force for the countercurrent multiplication system in the outer medulla. The absence of significant activity in inner medullary ATL and DTL, however, implies that interstitial solute accumulation in this region probably occurs by passive processes. The localization of significant Na+,K+-ATPase in outer medullary DTL of long loop nephrons in the rat suggests that solute addition in this segment may occur in part by an active salt secretory mechanism that could ultimately contribute to the generation of inner medullary interstitial hypertonicity and urine concentration.  相似文献   

13.
A rat brain cDNA library was screened by using as a probe a fragment of cDNA encoding the alpha-subunit of human Na+,K+-ATPase. Two different cDNA clones were obtained and analyzed. One of them was concluded to be a cDNA encoding the alpha-subunit of the weakly ouabain-sensitive rat kidney-type Na+,K+-ATPase. The deduced amino acid sequence consists of 1,018 amino acids. The alpha-subunit of the rat kidney-type Na+,K+-ATPase shows 97% homology in amino acid sequence with the alpha-subunit of human, sheep, or pig enzyme and 87% with that of Torpedo. Based on a comparison of the amino acid sequence at the extracellular domain of the alpha-subunit between weakly ouabain-sensitive rat kidney-type enzyme and the ouabain-sensitive human, sheep, pig, or Torpedo enzyme, it was proposed that only two significant amino acid replacements are unique to the rat kidney-type alpha-subunit. Another cDNA clone obtained showed 72% homology in nucleotide sequence with the former cDNA coding the alpha-subunit of the rat kidney-type Na+,K+-ATPase and the deduced amino acid sequence exhibited 85% homology with that of the alpha-subunit of rat kidney-type Na+,K+-ATPase.  相似文献   

14.
Previous studies have shown that cytoplasmic K+ release and the associated E2 → E1 conformational change of the Na+,K+-ATPase is a major rate-determining step of the enzyme's ion pumping cycle and hence a prime site of acute regulatory intervention. From the ionic strength dependence of the enzyme's distribution between the E2 and E1 states, it has also been found that E2 is stabilized by an electrostatic attraction. Any disruption of this electrostatic attraction would, thus, have profound effects on the rate of ion pumping. The aim of this paper is to identify the location of this interaction. Using enhanced-sampling molecular dynamics simulations with a predicted N-terminal structure added to the X-ray crystal structure of the Na+,K+-ATPase, a previously postulated salt bridge between Lys32 and Glu233 (rat sequence numbering) of the enzyme's α-subunit can be excluded. The residues never approach closely enough to form a salt bridge. In contrast, strong interactions with anionic lipid head groups were seen. To investigate the possibility of a protein-lipid interaction experimentally, the surface charge density of Na+,K+-ATPase-containing membrane fragments was estimated from zeta potential measurements to be 0.019 (± 0.001) C m−2. This is in good agreement with the charge density previously determined to be responsible for stabilization of the E2 state of 0.023 (± 0.009) C m−2 and the membrane charge density estimated here from published electron-microscopic images of 0.018C m−2. The results are, therefore, consistent with an interaction of the Na+,K+-ATPase α-subunit N-terminus with negatively-charged lipid head groups of the neighbouring cytoplasmic membrane surface as the origin of the electrostatic interaction stabilising the E2 state.  相似文献   

15.
Summary Na+, K+-ATPase plays a central role in the ionic and osmotic homeostasis of cells and in the movements of electrolytes and water across epithelial boundaries. Microscopic localization of the enzyme is, therefore, of crucial importance in establishing the subcellular routes of electrolyte flow across structurally complex and functionally polarized epithelia. Recently developed approaches to the localization of Na+, K+-ATPase are reviewed. These methods rely on different properties of the enzyme and encompass cytochemical localization of the K+-dependent nitrophenylphosphatase component of the enzyme, autoradiographic localization of tritiated ouabain binding sites, and immunocytochemical localization of the holoenzyme and of its catalytic subunit. The rationales for each of these techniques are outlined as are the critieria that have been established to validate each method. The observed localization of Na+, K+-ATPase in various tissues is discussed, particularly as it relates to putative and hypothetical mechanisms that are currently thought to mediate reabsorptive and secretory electrolyte transport.  相似文献   

16.
17.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.  相似文献   

18.
Several studies have indicated that olfactory responses are impeded by amiloride. Therefore, it was of interest to see whether, and if so which, olfactory epithelial cellular compartments have amiloride- sensitive structures. Using ultrastructural methods that involved rapid freezing, freeze-substitution and low temperature embedding of olfactory epithelia, this study shows that, in the rat, this tissue is immunoreactive to antibodies against amiloride sensitive Na(+)- channels. However, microvilli of olfactory supporting cells, as opposed to receptor cilia, contained most of the immunoreactive sites. Apices from which the microvilli sprout and receptor cell dendritic knobs had much less if any of the amiloride-antibody binding sites. Using a direct ligand-binding cytochemical method, this study also confirms earlier ones that showed that olfactory receptor cell cilia have Na+, K(+)-ATPase. It is proposed that supporting cell microvilli and the receptor cilia themselves have mechanisms, different but likely complementary, that participate in regulating the salt concentration around the receptor cell cilia. In this way, both structures help to provide the ambient mucous environment for receptor cells to function properly. This regulation of the salt concentration of an ambient fluid environment is a function that the olfactory epithelium shares with cells of transporting epithelia, such as those of kidney.   相似文献   

19.
20.
Summary Ultrastructural localization of Na, K-ATPase -subunit along rat nephron segments was investigated quantitatively by immunogold electron microscopy on LR-White ultrathin sections using affinity-purified antibody against -subunit of the enzyme. Ultrathin sections were incubated with the antibody at a saturation level and the number of gold particles bound per m of the plasma membrane (particle density) of the tubular epithelial cells from the proximal tubule to the collecting duct was determined. In all the tubular epithelial cells, gold particles were located exclusively on the basolateral surface, and no significant binding of gold particles to the apical surface was observed. Distribution of gold particles on the basolateral membranes was quite heterogeneous; lateral membranes and infolded basal membranes were highly labeled, whereas the basal membranes which are in direct contact with the basal lamina were scarcely labeled. The average particle density on the basal surface was highest in the distal straight tubule cells (11.4 units), very high in the distal convoluted tubule cells (9.8 units), intermediate in the proximal tubule cells (3.3 units), in the connecting tubule cells (4.3 units), and in the principal cells of the collecting duct (5.6–3.8 units), low in the thin limb of Henle's loop (1.0 unit), and at the control level in the intercalated cells in the connecting and collecting duct. The relative number of gold particles/mm nephron segment and the relative number of gold particles in the various nephron segments were calculated using quantitative morphological data. The estimated distribution profile of the former was in good agreement with the Na, K-ATPase activity profile in rat nephron, which was determined biochemically with a microenzymatic method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号