首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M L Kuo  J K Lin 《Mutation research》1989,212(2):231-239
The induction of DNA single-strand breaks in C3H10T1/2 mouse fibroblasts and Chinese hamster ovary (CHO) cells by N-nitroso-N-2-fluorenylacetamide (N-NO-2-FAA) was demonstrated by the alkaline elution technique. Without metabolic activating system (i.e., rat liver S9 fraction), N-NO-2-FAA exhibits more direct and strong damaging effects on DNA than its parent compound, 2-FAA, at equal concentration in both cell lines. To compare the DNA-damaging potency of N-NO-2-FAA with other well-known carcinogens, such as benzo[a]pyrene, 2-nitrofluorene, and N-methyl-N'-nitrosoguanidine (MNNG), the order of potency is as follows: MNNG (5 microM) greater than N-NO-2-FAA (150 microM) greater than benzo[a]pyrene (20 microM) at equitoxic concentrations, LD37, in the same cell system. Another parallel experiment indicated that N-NO-2-FAA could disrupt the superhelicity of circular plasmid DNA (pBR 322) at a dose range of 0.1-50 mM; however, a complete conversion to form III linear DNA was found at the highest concentration (50 mM). After treatment with various concentrations of N-NO-2-FAA, ouabain resistance (ouar) was induced in C3H10T1/2 cells, while both ouar and 6-thioguanine resistance (6-TGr) were induced in CHO cells. The mutation frequency in the Na+/K+-ATPase locus in CHO cells (1.5 X 10(-6) mutants/microM) is higher than that in C3H10T1/2 cells (1.0 X 10(-6) mutants/microM). The maximal mutation frequency at the Na+/K+-ATPase gene locus was attained with 30 min of exposure in C3H10T1/2 cells, whereas the mutation frequency in CHO cells continued to increase up to 80 min of treatment. Similarly, the maximal mutation frequency at the HPRT locus also continued to increase up to 80 min of treatment. Finally, a linear plot of alkali-labile lesions versus 6-TGr mutations was obtained; but the same relationship was not observed in the case of ouar mutation.  相似文献   

2.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

3.
DNA adduct formation in various organs of mice was determined after i.p. injection with the ethylating agents N-ethyl-N-nitrosourea (ENU), ethyl methanesulfonate (EMS), and diethyl sulfate (DES). The potency of the 3 chemicals to react either at the O6 position of guanine or at the N-7 position of guanine was related to their potency to induce mutations in the specific-locus assay of the mouse. ENU, which produces relatively high levels of O-alkylations (O6-ethylguanine), is primarily mutagenic in spermatogonia of the mouse, whereas EMS and DES, which produce relatively high levels of N-alkylations (7-ethylguanine) in DNA, are much more mutagenic in post-meiotic stages of male germ cells. The relationship between exposure to ENU and the dose, determined as O6-ethylguanine per nucleotide in testicular DNA, is non-linear. However, the relationship between dose and mutation induction in spermatogonia by ENU appears to be linear, which is expected if O6-ethylguanine is the major mutagenic lesion. The relatively high mutagenic potency of EMS and DES in the late stages of spermatogenesis is probably due to the accumulation of apurinic sites which generate mutations after fertilization. A comparison of mutation induction by ENU in spermatogonia and mutation induction in cultured mammalian cells indicates that about 10 O6-ethylguanine residues were necessary in the coding region of a gene to generate a mutation.  相似文献   

4.
DNA double-strand breaks (DSBs) are the most severe lesions induced by ionizing radiation, and unrejoined or misrejoined DSBs can lead to cell lethality, mutations and the initiation of tumorigenesis. We have investigated X-ray- and alpha-particle-induced mutations that inactivate the hypoxanthine guanine phosphoribosyltransferase (HPRT) gene in human bladder carcinoma cells and in hTERT-immortalized human fibroblasts. Fifty to 80% of the mutants analyzed exhibited partial or total deletions of the 9 exons of the HPRT locus. The remaining mutants retained unaltered PCR products of all 9 exons but often displayed a failure to amplify the HPRT cDNA. Hybridization analysis of a 2-Mbp NotI fragment spanning the HPRT gene with a probe 200 kbp distal to the HPRT locus indicated altered fragment sizes in most of the mutants with a wild-type PCR pattern. These mutants likely contain breakpoints for genomic rearrangements in the intronic sequences of the HPRT gene that allow the amplification of the exons but prevent HPRT cDNA amplification. Additionally, mutants exhibiting partial and total deletions of the HPRT exons also frequently displayed altered NotI fragments. Interestingly, all mutations were very rarely associated with interchromosomal exchanges analyzed by FISH. Collectively, our data suggest that intrachromosomal genomic rearrangements on the Mbp scale represent the prevailing type of radiation-induced HPRT mutations.  相似文献   

5.
A large series of independent mutants deficient in HPRT enzyme activity, isolated from V79-4 hamster cells (Brown and Thacker, 1984), were assessed for properties which reflect the nature of the genetic changes induced. A total of 88 mutants were screened, 43 isolated from gamma-ray-treated cultures and 45 induced by ethyl methanesulphonate (EMS). Firstly, each mutant was assayed for the presence of protein with the antigenic response of HPRT (cross-reacting material, CRM), using an antibody raised against partially purified V79-4 HPRT enzyme. In a competitive inhibition assay, 31% of EMS-induced mutants were CRM-positive compared to 7% of the gamma-ray series. Secondly, each mutant was tested for ability to revert to HPRT proficiency, either spontaneously or after treatment with the powerful mutagen ethyl nitrosourea (ENU). All except 2 of the EMS-induced mutants reverted with ENU, and many reverted spontaneously, under the given conditions. However reversion was not detected in about 80% of gamma-ray-induced mutants, suggesting that the types of forward mutation caused by ionizing radiation differ qualitatively from those caused by EMS. The EMS-induced mutations are likely to be mostly point mutations, with at least 40% of the missense type, while gamma-ray-induced mutations may arise mostly through larger genetic changes.  相似文献   

6.
The molecular basis of 29 N-ethyl-N-nitrosourea (ENU)-induced HPRT-deficient mutants of mouse lymphoma cells (GRSL 13-2) was investigated using nucleic acid blot hybridization techniques. DNA from all 29 mutants showed normal restriction patterns on Southern blots when probed with HPRT cDNA, but 10 mutants differed from wild-type cells in their cytoplasmic HPRT mRNA level. In 5 mutants we found 10-25% of the normal amount of HPRT mRNA, whereas in another 5 mutants no HPRT mRNA could be detected at all. These mutants do not seem to be induced by hypermethylation of regulatory sequences of the HPRT gene, since they could not be reverted to an HPRT-proficient phenotype by treatment of the cells with 5-azacytidine.  相似文献   

7.
Ouabain-resistant mutations in Chinese hamster cells have been quantitatively characterized. The mutation frequencies were found to be induced curvilinearly with treatments of increasing doses of ultraviolet light (UV). For the range of UV doses tested (5--20 J/m(2)), the observed frequency, Y, as a function of UV dose X, follows a curvilinear function, Y = (-28 + 13.37 X--1.52X(2) + 0.08X(3)) . 10(-6). The frequencies of UV-induced mutations were directly correlated with cell survival, indicating a similar causal relationship between cell killing and mutation induction. Under the same experimental conditions, X-rays induced 6--thioguanine-, but not ouabain-, resistant mutations. UV-induced ouabain-resistant (ouar) mutants exhibit a selection disadvantage. Their phenotypic expressions are modifiable by various agents. Wild type and 16 ouar mutants were compared with respect to their sensitivity to ouabain inhibition of 86Rb uptake by whole cells. All the ouar mutants assayed are less sensitive to the drug than are wild-type cells. In the absence of ouabain, the Na+--K+--ATPase activities can be significantly higher or lower than that of the wild-type cells.  相似文献   

8.
Mutations induced in Drosophila spermatozoa at the alcohol dehydrogenase Adh locus by 1-ethyl-1-nitrosourea (ENU) were compared to X-ray-induced mutations using genetic tests for complementation, southern blotting, western blotting and northern blotting. 8 of 10 ENU-induced mutations complemented all known adjacent loci and were presumed to be intragenic. In contrast, 8 of 30 X-ray-induced mutations were intragenic. Southern blot analysis showed that 2 of 7 intragenic mutations induced by X-rays were altered at the Adh locus, whereas all 8 intragenic ENU mutants appeared normal. Western blot analysis showed 4 of 7 intragenic mutants induced by X-rays produced a detectable polypeptide; 1 of the 4 had normal molecular weight and charge. In contrast, 7 of the 8 intragenic mutants induced by ENU produced a polypeptide of normal molecular weight and charge. One ENU and two X-ray-induced mutants, which had normal southern blots and no detectable polypeptide, produced normal molecular weight mRNA by northern blots. The interpretation of these results is that in spermatozoa X-rays induce primarily deletions that either produce deficiencies of the Adh locus or nonsense mutations within the locus, whereas ENU induces primarily missense mutations. This forward mutation assay based on loss of enzymatic activity efficiently recovered a broad spectrum of mutations ranging from missense to intragenic deletions and multi-locus deficiencies. Only 3 of these 40 mutations produced a polypeptide detectable as an electrophoretic variant.  相似文献   

9.
Spontaneous and X-ray-induced mutants at the hypoxanthine phosphoribosyl transferase (HPRT) locus have been isolated from V79 Chinese hamster cells and characterized at the biochemical and cytogenetic levels. Fourteen spontaneous and 24 X-ray-induced clones were azaguanine and thioguanine resistant, did not grow in HAT medium (AZRTGRHATS) and failed to incorporate significant levels of [14C]hypoxyanthine. Cytogenetic analysis of two spontaneous and eight X-ray-induced mutants revealed no major X chromosome rearrangements. In two induced mutants, one of which was hypotetraploid (mode 35-39) with 2 X chromosomes, the short arm of the chromosome (Xp) was slightly shorter than normal. A third mutant was hyperdiploid (mode 22-23) compared with the parental clone (mode 21). When compared with wild-type clones, no other cytogenetic changes were evident in the remaining mutants. Analysis at the DNA level using a Chinese hamster HPRT cDNA probe showed major deletion of HPRT sequences in two and partial deletion in another two induced mutants. In two of the mutants with deletions of HPRT sequences there was a visible shortening of the Xp arm. In the other six mutants two spontaneous and four induced) no karyotypic changes or alterations in restriction fragment patterns were detected suggesting that they carry small deletions or point mutations at the HPRT locus.  相似文献   

10.
We have characterized the structural changes in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene of 14 UV-induced, 15 γ-ray-induced and 17 spontaneous mutants of human lymphoblastoid cells selected for 6-thioguanine (6TG) resistance. Southern blot analysis using the full-length HPRT cDNA as a probe revealed that 29% (5/17) of the spontaneous mutants contained detectable alterations in their restriction fragment patterns. Among the 15 mutants induced by γ rays, 7 (47%) had such alterations indicative of large deletions in the HPRT gene. In contrast, all 14 UV-induced mutants exhibited hybridization patterns indistinguishable from those of the wild-type cells. These results suggest that UV is likely to induce point mutations at the HPRT locus on the human chromosome and that the molecular mechanism of UV-induced mutation is quite different from that of ionizing radiation-induced mutation or spontaneous mutation in human cells.  相似文献   

11.
L5178 mouse lymphoma cells were treated with the mismatching agent 6-hydroxy-aminopurine (HAP), a base analogue known to produce forward and reverse mutations in bacteria. Mutants with the phenotype deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT) were selected in 6-thioguanine (TG)-containing medium and isolated. Reverse mutations to Hhe HPRT-proficient phenotype oc occuredd both spontaneously and after treatment with ethyl nitrosourea (ENU), which suggested that the initial HAP treatment had induced point mutations at the HPRT locus.

Reconstruction experiments, in which a small number of wild-type cells together with different numbers of mutant cells were seeded in HAT medium, indicated that densities up to 106 cells per ml can be used for the selection of revertants. Optimal expression of induced revertants was obtained two days after treatment.

The dose-response relationship for induction of reverse mutations by ENU appears not to deviate from linearity. The highest revertant frequency observed was 3.3 × 10−5 at an ENU concentration of 1 mM. The spontaneous reversion frequency per generation — based on 3 spontaneous revertants — was estimated to be 1.3 × 10−9. All revertants were indistinguishable from the parental wild-type line with respect to the activity as well as the electrophoretic mobility of HPRT.  相似文献   


12.
The mutational specificity of N-ethyl-N-nitrosourea (ENU) was determined in Drosophila melanogaster using the vermilion locus as a target gene. 25 mutants (16 F1 and 9 F2 mutants) were cloned and sequenced. Only base-pair changes were observed; three of the mutants represented double base substitutions. Transition mutations were the most prominent sequence change: 61% were GC----AT and 18% AT----GC substitutions. Both sequence changes can be explained by the miscoding properties of the modified guanine and thymine bases. A strong bias of neighboring bases on the occurrence of the GC----AT transitions or a strand preference of both types of transition mutations was not observed. The spectrum of ENU mutations in D. melanogaster includes a significant fraction (21%) of transversion mutations. Our data indicate that like in other prokaryotic and eukaryotic systems also in D. melanogaster the O6-ethylguanine adduct is the most prominent premutational lesion after ENU treatment. The strong contribution of the O6-ethylguanine adduct to the mutagenicity of ENU possibly explains the absence of distinct difference between the type of mutations observed in the F1 and F2 mutants. Although the latter arise later during development, the spectrum of mosaic mutations is also dominated by GC----AT transition mutations.  相似文献   

13.
MJM. Nivard  A. Pastink    E. W. Vogel 《Genetics》1992,131(3):673-682
The nature of DNA sequence changes induced by methyl methanesulfonate (MMS) at the vermilion locus of Drosophila melanogaster was determined after exposure of postmeiotic male germ cell stages. MMS is a carcinogen with strong preference for base nitrogen alkylation (s = 0.86). The spectrum of 40 intralocus mutations was dominated by AT----GC transitions (23%), AT----TA transversions (54%) and deletions (14%). The small deletions were preferentially found among mutants isolated in the F1 (8/18), whereas the AT----GC transitions exclusively occurred in the F2 (6/22). The MMS-induced transversions and deletions are presumably caused by N-methyl DNA adducts, which may release apurinic intermediates, known to be a time-related process. Furthermore, MMS produces multilocus deletions, i.e., at least 30% of the F1 mutants analyzed were of this type. A comparison of the mutational spectra of MMS with that produced by ethylnitrosourea (ENU), also in the vermilion locus of Drosophila, reveals major differences: predominantly transition mutations (61% GC----AT and 18% AT----GC) were found in both the F1 and F2 spectrum induced by ENU. It is concluded that the mutational spectrum of MMS is dominated by nitrogen DNA adducts, whereas with ENU DNA sequence changes mainly arose from modified oxygen in DNA.  相似文献   

14.
Reactive oxygen species (ROS) produced by intracellular metabolism are believed to contribute to spontaneous mutagenesis in somatic cells. Hydrogen peroxide (H(2)O(2)) has been shown to induce a variety of genetic alterations, probably by the generation of hydroxyl radicals via the Fenton reaction. The kinds of DNA sequence alterations caused by H(2)O(2) in prokaryotic cells have been studied extensively, whereas relatively little is known about the mutational spectrum induced by H(2)O(2) in mammalian genes. We have used the T-cell cloning assay to study the ability of H(2)O(2) to induce mutations at the hypoxanthine guanine phosphoribosyltransferase (HPRT) locus in primary human lymphocytes. Treatment of cells for 1 h with 0.34-1.35 mM of H(2)O(2) caused a dose dependent decrease of cell survival and increase of the HPRT mutant frequency (MF). After 8 days of expression time, the highest dose of H(2)O(2) caused a 5-fold increase of MF compared to the untreated control cells. Mutant clones were collected and the genomic rearrangements at the T-cell receptor (TCR) gamma-locus were studied to identify independent mutations. RT-PCR and DNA sequencing was used to identify mutations in the HPRT coding region. Due to a relatively high frequency of sibling clones, only six independent mutations were obtained among the controls, and 20 among the H(2)O(2) treated cells. In both sets, single base pair substitutions were the most common type of mutation (5/6 and 13/20, respectively), with a predominance of transitions at GC base pairs, which is also the most common type of HPRT mutation in T-cells in vivo. Among the single base pair substitutions, five were new mutations not previously reported in the human HPRT mutation database. Overall, the kinds of mutation occurring in T-cells in vivo and H(2)O(2) treated cells were similar, albeit the number of mutants was too small to allow a meaningful statistical comparison. These results demonstrate that H(2)O(2) is mutagenic to primary human T-lymphocytes in vitro and induces mutations of the same kind that is observed in the background spectrum of HPRT mutation in T-cells in vivo.  相似文献   

15.
Cloning of genomic and cDNA sequences of mammalian genes has made it possible to analyze at the molecular level mutations induced by radiation and chemical mutagens. The X-linked HPRT gene is very suitable for these investigations because in addition to the availability of cell culture systems, HPRT mutants can also be obtained directly from the lymphocytes of mouse and man. Recently a new technique has been introduced by Saiki and co-workers which allows the cloning and sequencing of small specific DNA segments from total genomic DNA after in vitro amplification of those segments up to 200,000-fold (Saiki et al., 1985). We have adapted this so-called polymerase chain reaction (PCR) procedure in such a way that the entire mouse HPRT-coding region could be amplified, cloned and sequenced. Instead of genomic DNA, we have used RNA as template in the PCR reactions. This allows us to detect point mutations in HPRT exon sequences in a very efficient way, since the DNA sequence of all 9 exons, which are scattered over 34 kb of DNA, can be obtained from only one amplification experiment. We studied the nature of 3 N-ethyl-N-nitrosourea (ENU)-induced HPRT mutants from cultured mouse lymphoma cells. One contains an A:T----G:C transition, the second an A:T----T:A transversion, whereas the third mutant is the result of abnormal splicing events, probably due to a mutation in the 3' splice site of the first intron.  相似文献   

16.
17.
The mutagenic specificities of ethylnitrosourea (ENU), X-rays (+/-)7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7, 8,9,10-tetrahydrobenzo[a]pyrene (BPDE), ICR-191, and N-acetoxy-2-acetylaminofluorene (N-AcO-AAF) were analyzed and compared in diploid human fibroblasts and Salmonella typhimurium. In the human fibroblasts, we compared the frequency of diphtheria toxin (DT)-resistant mutants, presumably induced in the gene coding for elongation factor-2, with the frequency of 6-thioguanine (TG) resistance induced by mutations in the gene coding for hypoxanthine(guanine)phosphoribosyltransferase (HPRT). Recovery of DT-resistant (DTr) cells requires that the mutant EF-2 retain the ability to carry on protein synthesis since the normal EF-2 will be inactivated by DT selection. Therefore, the DTr mutation cannot involve major changes in the gene. In contrast, cells can acquire TG resistance by any mechanism which eliminates HPRT activity, e.g., base substitution, frameshift, deletion, loss of chromosomes. Each agent was assessed by calculating the ratio of the slopes of the dose-response plots (induced variant frequency as a function of dose of the agent used) for the two markers (DTr/TGr variants.). In S. typhimurium we examined the reversion frequency in four histidine-requiring strains bearing forward mutations of the frameshift (TA1538, TA98) or missense (TA1535, TA100) type. ENU, which was predominantly a base substitution mutagen in the bacteria, gave a ratio of DTr to TGr variants of 1.5. As expected of an agent inducing gross chromosomal changes, X-rays induced no revertants in bacteria and in human cells gave a ratio of 0.1. ICR-191 which was predominantly a frameshift mutagen in bacteria gave a ratio of 0.15. In the set of bacterial strains containing the plasmid pKM101, BPDE reverted both frameshift and base substitution mutations. It did not cause reversions in the other set of strains. In human cells BPDE gave a response similar to ENU, i.e., a ratio of DTr/TGr variants of 1.5. As reported by others, N-AcO-AAF was predominantly a frameshift mutagen in bacteria. However, in the human cells it gave a ratio of DTr/TGr variants of 1.5, similar to ENU and BPDE. These results suggest that in human cells, BPDE and N-AcO-AAF, like ENU, yield predominantly base substitutions, while ICR-191 and X-rays largely produce mutations by mechanisms which result in more extensive alterations in the gene.  相似文献   

18.
Analysis of point mutations induced by ultraviolet light in human cells   总被引:3,自引:0,他引:3  
Mutations induced in cultured human cells by 254-nm UV light were analyzed within exon 3 of the hypoxanthine guanine phosphoribosyl transferase (HPRT) gene. Five large independent cultures of human lymphoblastoid cells, line TK6, were exposed to 4 J/m2 of 254-nm UV light and mutants at the HPRT locus were selected en masse by 6-thioguanine (6TG) resistance. Exon 3 of the HPRT gene was amplified from the mutant cells by polymerase chain reaction (PCR) using modified T7 DNA polymerase. Denaturing gradient gel electrophoresis (DGGE) was used to separate the mutant sequences from the wild type as mutant/wild-type heteroduplexes. Individual mutant bands were isolated from the gel and the nature of the mutations was determined by direct sequencing. Eight predominant mutations were detected in the 184-bp exon 3 sequence. Of these, 3 transition, including 2 G-C to A-T and 1 A-T to G-C and 2 A-T to C-G transversions, appeared in all 5 UV-treated cultures but not in untreated cultures and were thus considered to be mutational hotspots. These observations are similar in nature to those previously reported in bacterial and rodent cells. A single G deletion, a tandem substitution of CpT for TpA, and a tandem triple substitution of GpGpA for ApApG were also observed but in only 2, 2 and 3 of the 5 UV-treated cultures, respectively. Numerical analysis of the mutant fractions of these 8 mutations indicated that each of them was distributed as a set of non-random and independent events, i.e., a mutational hotspot.  相似文献   

19.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary flavorings that exhibit antimutagenic activity against mutagen-induced and spontaneous mutations in bacteria. Although these compounds were antimutagenic against chromosomal mutations in mammalian cells, they have not been studied for antimutagenesis against spontaneous gene mutations in mammalian cells. Thus, we initiated studies with VAN and CIN in human mismatch repair-deficient (hMLH1(-)) HCT116 colon cancer cells, which exhibit high spontaneous mutation rates (mutations/cell/generation) at the HPRT locus, permitting analysis of antimutagenic effects of agents against spontaneous mutation. Long-term (1-3 weeks) treatment of HCT116 cells with VAN at minimally toxic concentrations (0.5-2.5mM) reduced the spontaneous HPRT mutant fraction (MF, mutants/10(6) survivors) in a concentration-related manner by 19-73%. A similar treatment with CIN at 2.5-7.5microM yielded a 13-56% reduction of the spontaneous MF. Short-term (4-h) treatments also reduced the spontaneous MF by 64% (VAN) and 31% (CIN). To investigate the mechanisms of antimutagenesis, we evaluated the ability of VAN and CIN to induce DNA damage (comet assay) and to alter global gene expression (Affymetrix GeneChip) after 4-h treatments. Both VAN and CIN induced DNA damage in both mismatch repair-proficient (HCT116+chr3) and deficient (HCT116) cells at concentrations that were antimutagenic in HCT116 cells. There were 64 genes whose expression was changed similarly by both VAN and CIN; these included genes related to DNA damage, stress responses, oxidative damage, apoptosis, and cell growth. RT-PCR results paralleled the Affymetrix results for four selected genes (HMOX1, DDIT4, GCLM, and CLK4). Our results show for the first time that VAN and CIN are antimutagenic against spontaneous mutations in mammalian (human) cells. These and other data lead us to propose that VAN and CIN may induce DNA damage that elicits recombinational DNA repair, which reduces spontaneous mutations.  相似文献   

20.
Structural alterations in the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in genomic DNA of adult rat-liver (ARL) epithelial cells that were mutated by alkylating and arylating mutagens were studied by restriction enzyme fragment pattern (RFP) analysis. ARL cells were mutated with the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or the activation-dependent arylating agents 7,12-dimethylbenz[a]anthracene (DMBA) and N-2-acetylaminofluorene (AAF). Alterations in the HPRT gene of at least 10 independent 6-thioguanine-resistant (TGr) clones mutated by each chemical were analyzed using 8 different restriction endonucleases; Hind III, EcoRI, BamHI, XbaI, Hae III, XhoI, MspI and PstI, and a full-length HPRT cDNA as a probe in molecular hybridization. Among the 10 MNNG-induced mutants, the RFPs obtained with most endonucleases displayed no changes, while an altered RFP was found in only one mutant using XbaI. None of the 10 DMBA-induced mutants displayed altered RFPs. Restriction analysis of the 10 AAF-induced mutants showed no abnormality in HPRT gene structure in most restriction digests, while altered RFPs were detected in one mutant using MspI and in two mutants with XbaI digestion. Overall, the studies reveal an absence of major DNA sequence changes in 26 of 30 induced mutants although the mutant phenotype of 4 of the TGr clones can be attributed to gross chromosomal changes or a point mutation at the restriction site. The absence of detectable alterations in the RFPs of the majority of the mutants is strongly suggestive of base substitution as the major molecular alteration underlying the mutant phenotype. The HPRT activity of 14 of 30 mutants was at least 5% of the wild-type level, which is consistent with a structural alteration in the gene product expressed as partial activity of the enzyme. Therefore, the data are interpreted as indicating that in the ARL cells, all 3 mutagens induced primarily localized alterations in base sequences in the HPRT gene together with a few mutations involving large sequence changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号