首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HPA axis is hyperactive under conditions of leptin and insulin resistance as well as after ANG II administration. We hypothesized that a hyperreactivity of the HPA axis to ANG contributes to an impaired glucose utilization in obesity, since leptin resistance and an overactive renin-angiotensin-aldosterone system are features of obesity. Zucker rats were treated with ANG via subcutaneous minipumps (0, 0.9, and 9.0 mug/h; 4 wk). PA axis reactivity and glucose homeostasis were characterized after CRH treatment and during an oral glucose tolerance test (OGTT). The elevated plasma profile of corticosterone after CRH stimulation in saline-treated OZR compared with LZR confirmed that the sensitization of the PA axis depended on leptin resistance. Irrespective of the rat strain, circulating ANG levels and blood pressure were selectively increased after administration of 9 mug/h ANG (high ANG). Only high ANG induced an elevation of the corticosterone and glucose response after CRH stimulation in OZR but did not affect the ACTH secretion. During OGTT, corticosterone and consequently glucose increased in OZR after high ANG, whereas the insulin secretion was decreased. In the adrenal glands of OZR, AT(1A) receptor mRNA levels increased after high ANG. We conclude that the impairment of glucose utilization after ANG stimulation is potentiated in leptin-resistant rats as a result of a hyperreactive PA axis, thereby confirming the functional importance of a dysregulation within the HPA axis in metabolic syndrome or obesity. The ACTH-independent stimulation of corticosterone release and the selective increase of AT(1A) receptor mRNA in the adrenals of OZR indicated a sensitization of adrenals toward ANG, causing a stimulation of the PA axis.  相似文献   

2.
Corticotropin-releasing hormone (CRH) has been found in both hypothalamic and extrahypothalamic sites of the brain and also in the adrenal medulla. To study the timing and location of delayed glucocorticoid action in rats, we measured the effects of 2-day and 7-day cortisol treatment on immunoreactive CRH concentrations in hypothalamus, cerebral cortex, hippocampus, cerebellum, and adrenal gland. The activity of the hypothalamo-pituitary-adrenal (HPA) axis and the sympathoadrenal system were also measured. Studies were carried out both in the afternoon and/or in the morning, to get information about possible circadian changes. CRH contents were not changed in any brain areas studied, except there was a trend of decrease in the hypothalamus compared to vehicle in the afternoon due to the lack of circadian increase after 7-day cortisol treatment. Pituitary ACTH content decreased significantly after 7-day treatment, while beta-endorphin did not. Plasma levels of ACTH, corticosterone, norepinephrine and epinephrine and adrenal ACTH and beta-endorphin contents decreased after 2-day, adrenal CRH content after 7-day treatment with cortisol. Our findings suggest, that chronic cortisol treatment inhibits the circadian activation of the HPA axis at all levels but has variable effects on baseline measures because it causes different changes in release and synthesis at different sites.  相似文献   

3.
The response to systemic stress is organized along the hypothalamic-pituitary-adrenal axis (HPA), whereas the response to a peripheral stress (solar radiation) is mediated by epidermal melanocytes (cells of neural crest origin) responsible for the pigmentary reaction. Melanocytes express proopiomelanocortin (POMC), corticotropin-releasing hormone (CRH), and CRH receptor-1 (CRH-R1) and can produce corticosterone. In the present study, incubation of normal epidermal melanocytes with CRH was found to trigger a functional cascade structured hierarchically and arranged along the same algorithm as in the HPA axis: CRH activation of CRH-R1 stimulated cAMP accumulation and increased POMC gene expression and production of ACTH. CRH and ACTH also enhanced production of cortisol and corticosterone, and cortisol production was also stimulated by progesterone. The chemical identity of the cortisol was confirmed by liquid chromatography-mass spectrometry (LC/MS2) with [corrected] mass spectrometry-mass spectrometry analyses. POMC gene silencing abolished the stimulatory effect of CRH on corticosteroid synthesis, indicating that this is indirect and mediated via production of ACTH. Thus the melanocyte response to CRH is highly organized along the same functional hierarchy as the HPA axis. This pattern demonstrates the fractal nature of the response to stress with similar activation sequence at the single-cell and whole body levels.  相似文献   

4.
The hypothalamic-pituitary-adrenal (HPA) axis is normally regulated by extrahypothalamic limbic structures, among these, the anterodorsal thalami nuclei (ADTN), which exert an inhibitory influence on HPA, in basal and acute stress conditions in rats. In the present work we have investigated whether neonatal maternal deprivation (MD) produces long-term changes in the ADTN regulation of HPA activity. Maternal deprivation, in female rats, for 4.5 hs daily, during the first 3 weeks of life, produced at 3 months old, a significant decrease in plasma ACTH concentration (p<0.001) and an increase in plasma corticosterone (C) (p<0.001), compared to control non-deprived rats (NMD). Also MD showed higher plasma epinephrine (E) and norepinephrine (NE) levels than NMD rats. The increase of NE (66.6% p<0.001) was higher than that observed in E (19%). After 30 days of ADTN lesion, plasma ACTH values were higher than in sham lesioned rats, in both NMD and MD animals. ACTH response was greater in MD rats. Plasma C, in NMD, was higher, whereas in MD lesioned animals, it was significantly lower than in sham lesioned. In MD rats, lesion produced a significant increase in plasma E and NE (p<0.001), and again, NE increase was higher than E increase. The more accentuated increase of NE than E, suggests sympathetic nervous system hyperactivity. In summary, neonatal maternal deprivation induces long-term alterations on HPA axis sensitivity and medullo adrenal secretion; enhanced sympathetic nervous system activity and, therefore affected the ADTN inhibitory influence on ACTH and adrenal glands secretion.  相似文献   

5.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

6.
Objective: To investigate possible differences, between generally and abdominally obese men, in activity and regulation of the hypothalamic‐pituitary‐adrenal (HPA) axis and the sympathetic nervous system. Research Methods and Procedures: Fifty non‐diabetic, middle‐aged men were selected to obtain two groups with similar body mass index (BMI) but different waist/hip circumference ratio (WHR). Measurements were performed of the activity of the HPA axis and the sympathetic nervous system, as well as metabolic and endocrine variables. Results: Men with a high WHR, in comparisons with men with a low WHR, had higher insulin, glucose, and triglyceride values in the basal state and higher glucose and insulin after an oral glucose tolerance test. Men with high WHR had elevated diurnal adrenocorticotropic hormone (ACTH) values but similar cortisol values, except lower cortisol values in the morning. Diurnal growth hormone concentrations showed reduced peak size. Stimulation of the HPA axis with corticotropin‐releasing hormone (CRH) and laboratory stress showed no difference in ACTH values between groups, but cortisol values were lower in men with high WHR. In comparison with men with a low WHR, men with a high WHR had elevated pulse pressure and heart rate in the basal state and after challenges by CRH and laboratory stress. They also had increased urinary excretion of catecholamine metabolites. Discussion: These results suggest a mild dysregulation of the HPA axis, occurring with elevated WHR independent of the BMI. The results also indicate a central activation of the sympathetic nervous system, such as in the early phases of hypertension, correlating with insulin resistance.  相似文献   

7.
Genistein, the soy isoflavone structurally similar to estradiol, is widely consumed for putative beneficial health effects. However, there is a lack of data about the genisteins' effects in adult males, especially its effects on the hipothalamo-pituitary-adrenal (HPA) axis. Therefore, the present study was carried out to investigate the effects of genistein on the HPA axis in orchidectomized adult rats, and to create a parallel with those of estradiol. Changes in the hypothalamic corticotrophin-releasing hormone (CRH) neurons and pituitary corticotrophs (ACTH cells) were evaluated stereologically, while corticosterone and ACTH levels were determined biochemically. Orchidectomy (Orx) provoked the enlargement (p<0.05) of: hypothalamic paraventricular nucleus volume (60%), percentage of CRH neurons (23%), percentage of activated CRH neurons (45%); pituitary weight (15%) and ACTH level (57%). In comparison with Orx, estradiol treatment provoked the enlargement (p<0.05) of: percentage of CRH neurons (28%), percentage of activated CRH neurons (2.7-fold), pituitary weight (131%) and volume (82%), ACTH level (69%), the serum (103%) and adrenal tissue (4.8 fold) level of corticosterone. Clearly, Orx has induced the increase in HPA axis activity, which even augments after estradiol treatment. Also, compared to Orx, genistein treatment provoked the enhancement (p<0.05) of: percentage of activated CRH neurons (2.3-fold), pituitary weight (28%) and volume (21%), total number of ACTH cells (22%) ACTH level (45%), the serum (2.6-fold) and adrenal tissue (2.8 fold) level of corticosterone. It can be concluded that an identical tendency, concerning the HPA axis parameters, follows estradiol and genistein administration to the orchidectomized adult rats.  相似文献   

8.
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.  相似文献   

9.
The aim of the present study was to determine the effect of social stress and significance of prostaglandins (PG) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by corticotropin releasing hormone (CRH) under basal and social crowding stress conditions. The stressed rats were crowded in groups of 24 to a cage for 3 or 7 days, whereas the control animals were haused in groups of 7 to a cage of the same size. The activity of HPA axis was determined by measuring plasma ACTH and serum corticosterone levels 1 h after i.p. CRH administration. Inhibitors of COX-1, piroxicam (0.2, 2.0, and 5.0 mg/kg), and COX-2, compound NS-398 (0.2 and 2.0 mg/kg), were administered i.p. 15 min prior to CRH (0.1 microg/kg i.p.) to control or crowded rats. The obtained results indicate that social stress for 3 and 7 days markedly intensifies the stimulatory action of CRH on ACTH secretion. Neither piroxicam nor NS-398 induce any significant effect on the CRH-elicited ACTH and corticosterone secretion in non-stressed or crowded rats. Therefore, PG generated by COX-1 or COX-2 do not participate to a significant extent in the stimulation of HPA axis by CRH under either basal conditions or during crowding stress. These results also indicate that the stimulatory action of CRH on ACTH secretion is not only completely resistant to desensitization but is sensitized during social crowding stress. The results contrast with a significant involvement of PG in the vasopressin-induced stimulation of HPA response during crowding stress.  相似文献   

10.
Glucocorticoids have been implicated in hypoglycemia-induced autonomic failure but also contribute to normal counterregulation. To determine the influence of normal and hypoglycemia-induced levels of glucocorticoids on counterregulatory responses to acute and repeated hypoglycemia, we compared plasma catecholamines, corticosterone, glucagon, and glucose requirements in male wild-type (WT) and glucocorticoid-deficient, corticotropin-releasing hormone knockout (CRH KO) mice. Conscious, chronically cannulated, unrestrained WT and CRH KO mice underwent a euglycemic (Prior Eu) or hypoglycemic clamp (Prior Hypo) on day 1 followed by a hypoglycemic clamp on day 2 (blood glucose both days, 65 +/- 1 mg/dl). Baseline epinephrine and glucagon were similar, and norepinephrine was elevated, in CRH KO vs. WT mice. CRH KO corticosterone was almost undetectable (<1.5 microg/dl) and unresponsive to hypoglycemia. CRH KO glucose requirements were significantly higher during day 1 hypoglycemia despite epinephrine and glucagon responses that were comparable to or greater than those in WT. Hyperinsulinemic euglycemia did not increase hormones or glucose requirements above baseline. On day 2, Prior Hypo WT had significantly higher glucose requirements and significantly lower corticosterone and glucagon responses. Prior Hypo and Prior Eu CRH KO mice had similar day 2 glucose requirements. However, Prior Hypo CRH KO mice had significantly lower day 2 epinephrine and norepinephrine vs. Prior Eu CRH KO and tended to have lower glucagon than on day 1. We conclude that glucocorticoid insufficiency in CRH KO mice correlates with 1) impaired counterregulation during acute hypoglycemia and 2) complex effects after repeated hypoglycemia, neither preventing decreased hormone responses nor worsening glucose requirements.  相似文献   

11.
Cholestatic patients often present with clinical features suggestive of adrenal insufficiency. In the bile duct-ligated (BDL) model of cholestasis, the hypothalamic-pituitary-adrenal (HPA) axis is suppressed. The consequences of this suppression on cholangiocyte proliferation are unknown. We evaluated 1) HPA axis activity in various rat models of cholestasis and 2) effects of HPA axis modulation on cholangiocyte proliferation. Expression of regulatory molecules of the HPA axis was determined after BDL, partial BDL, and α-naphthylisothiocyanate (ANIT) intoxication. The HPA axis was suppressed by inhibition of hypothalamic corticotropin-releasing hormone (CRH) expression by central administration of CRH-specific Vivo-morpholinos or by adrenalectomy. After BDL, the HPA axis was reactivated by 1) central administration of CRH, 2) systemic ACTH treatment, or 3) treatment with cortisol or corticosterone for 7 days postsurgery. There was decreased expression of 1) hypothalamic CRH, 2) pituitary ACTH, and 3) key glucocorticoid synthesis enzymes in the adrenal glands. Serum corticosterone and cortisol remained low after BDL (but not partial BDL) compared with sham surgery and after 2 wk of ANIT feeding. Experimental suppression of the HPA axis increased cholangiocyte proliferation, shown by increased cytokeratin-19- and proliferating cell nuclear antigen-positive cholangiocytes. Conversely, restoration of HPA axis activity inhibited BDL-induced cholangiocyte proliferation. Suppression of the HPA axis is an early event following BDL and induces cholangiocyte proliferation. Knowledge of the role of the HPA axis during cholestasis may lead to development of innovative treatment paradigms for chronic liver disease.  相似文献   

12.
Glucocorticoids are essential for normal hypothalamic-pituitary-adrenal (HPA) axis activity; however, recent studies warn that exposure to excess endogenous or synthetic glucocorticoid during a specific period of prenatal development adversely affects HPA axis stability. We administered dexamethasone (DEX) to pregnant rats during the last week of gestation and investigated subsequent HPA axis regulation in adult male offspring in unrestrained and restraint-stressed conditions. With the use of real-time PCR and RIA, we examined the expression of regulatory genes in the hippocampus, hypothalamus, and pituitary, including corticotropin-releasing hormone (CRH), arginine vasopressin (AVP), glucocorticoid receptors (GR), mineralcorticoid receptors (MR), and 11-beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1), as well as the main HPA axis hormones, adrenal corticotropic hormone (ACTH) and corticosterone (CORT). Our results demonstrate that the DEX-exposed group exhibited an overall change in the pattern of gene expression and hormone levels in the unrestrained animals. These changes included an upregulation of CRH in the hypothalamus, a downregulation of MR with a concomitant upregulation of 11beta-HSD-1 in the hippocampus, and an increase in circulating levels of both ACTH and CORT relative to unrestrained control animals. Interestingly, both DEX-exposed and control rats exhibited an increase in pituitary GR mRNA levels following a 1-h recovery from restraint stress; however, the increased expression in DEX-exposed rats was significantly less and was associated with a slower return to baseline CORT compared with controls. In addition, circulating levels of ACTH and CORT as well as hypothalamic CRH and hippocampal 11beta-HSD-1 expression levels were significantly higher in the DEX-exposed group compared with controls following restraint stress. Taken together, these data demonstrate that late-gestation DEX exposure in rats is associated with persistent changes in both the modulation of HPA axis activity and the HPA axis-mediated response to stress.  相似文献   

13.
The authors have studied mechanisms which could be involved in the sustained activation of the hypothalamus–pituitary–adrenal (HPA) axis during continuous infusion of rats with recombinant human interleukin-1β (IL-1β). First, the effects of 3 days of intracerebroventricular (i.c.v.) infusion of rats with IL-1 on plasma adrenocorticotropin (ACTH) and corticosterone (B) levels were investigated. Thereafter, changes in plasma ACTH and B levels were followed in rats intraperitoneally (i.p.) infused with IL-1β after immunoneutralization of corticotropin-releasing hormone (CRH), hypophysectomy (HPX), macrophage depletion using dichloromethylene diphosphonate (Cl2MDP)-containing liposomes, adrenalectomy (ADX) and dexamethasone (DEX) administration, respectively. Infusion of IL-1β i.c.v., even in doses as low as 0.1 μg/day, induced significant increases in plasma ACTH and B levels. HPX and ADX rats died within 18 h after starting the IL-1β infusion (0.5 μg/day). Immunoneutralization of CRH significantly decreased and macrophage depletion significantly increased the stimulation of the HPA axis by IL-1 (4.0 μg/day). Administration of high doses of DEX completely abolished the stimulation of the HPA axis by IL-1β (2.0 μg/day). The present study demonstrates that lower doses of IL-1β were able to activate the HPA axis when infused i.c.v. compared with i.p. Regarding stimulation of the HPA axis by chronic i.p. infusion of IL-1β the present study: (1) provides evidence that the CRH system is involved; (2) provides no evidence for a direct stimulatory effect of IL-1β on the release of B by the adrenal gland which is of sufficient magnitude to resist the stress of chronic i.p. IL-1β infusion; (3) shows that endogenous macrophage-derived mediators, induced by i.p. IL-1β infusion, express an overall inhibitory rather than a stimulatory effect on the activity of the HPA axis; (4) demonstrates that exogenous administration of DEX blocks the effect of IL-1β, which fits well in the concept of an immunoregulatory feedback between IL-1β and glucocorticoids.  相似文献   

14.
Dysregulation in corticotropin-releasing hormone (CRH) secretion in the hypothalamus-pituitary-adrenal (HPA) axis may be involved in the etiology of major depressive disorder (MDD). Chronic therapy with standard antidepressant drugs, such as imipramine, can downregulate HPA axis function, indicating that the HPA axis may be an important target for antidepressant action. We tested several doses of a standardized commercial preparation of Hypericum perforatum plant extract (popularly known as St. John's Wort), a medicinal herb used for treating mild depressive symptoms, to determine whether it also modulated HPA axis function. Chronic imipramine treatment (daily injections for 8 weeks) of male Sprague-Dawley rats significantly downregulated circulating plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone compared to animals treated with saline. However, chronic St. John's Wort treatment (daily gavage for 8 weeks) had no effect on plasma ACTH or corticosterone, even at the highest doses tested. Our results confirm previous findings that imipramine may have significant peripheral HPA axis-mediated effects. However, our data does not support any role for H. perforatum in modulation of HPA axis function, suggesting that alternative pathways may be involved in mediating its antidepressant effects.  相似文献   

15.
We have previously reported that repeated bouts of insulin-induced hypoglycemia (IIH) in the rat result in blunted activation of the paraventricular, arcuate, and dorsomedial hypothalamic (DMH) nuclei. Because DMH activation has been implicated in the sympathoadrenal and hypothalamic-pituitary-adrenal (HPA) responses to stressors, we hypothesized that its blunted activation may play a role in the impaired counterregulatory response that is also observed with repeated bouts of IIH. In the present study, we evaluated the role of normal DMH activation in the counterregulatory response to a single bout of IIH. Local infusion of lidocaine (n = 8) to inactivate the DMH during a 2-h bout of IIH resulted in a significant overall decrease of the ACTH response and a delay of onset of the corticosterone response compared with vehicle-infused controls (n = 9). We observed suppression of the ACTH response at time (t) = 90 and 120 min (50 +/- 12 and 63 +/- 6%, respectively, of control levels) and early suppression of the corticosterone response at t = 30 min (59 +/- 13% of the control level). The epinephrine, norepinephrine, and glucagon responses were not altered by DMH inactivation. Our finding suggests that DMH inactivation may play a specific role in decreasing the HPA axis response after repeated bouts of IIH.  相似文献   

16.
17.
The aim of the present study was to determine the effect of social crowding stress and significance of nitric oxide (NO) and prostaglandins (PG) generated by constitutive and inducible nitric oxide synthase (NOS) and cyclooxygenase (COX) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic receptor agonist carbachol. Inhibitors of neuronal NOS (nNOS) L-NNA, general NOS L-NAME and inducible NOS (iNOS) aminoguanidine, as well as inhibitors of COX-1, piroxicam, and COX-2, compound NS-398 were administered 15 min prior to carbachol to control or crowded rats (24 rats in cage for 7, during 3 and 7 days). In stressed rats L-NAME, L-NNA and aminoguanidine significantly intensified the carbachol-induced ACTH and corticosterone secretion, like in control rats. Piroxicam, markedly decreased the carbachol-induced ACTH and corticosterone response under either basal or stress conditions. Compound NS-398 did not markedly alter the carbachol-induced HPA response in control and stressed rats. Crowding stress (3 days) significantly impaired the i.c.v. prostaglandin E(2)-induced ACTH response. Corticotropin releasing hormone (CRH) receptor antagonists, alpha-helical CRH [9-14], given i.c.v. did not alter the PGE(2)-evoked corticosterone response in either control or stressed rats, indicating that hypothalamic CRH is not involved in the PGE(2)-induced central stimulation of HPA axis. In control rats L-NAME considerably enhanced, while L-arginine, a physiological NOS substrate, abolished the PGE(2)-induced ACTH and corticosterone response. In stressed rats this NOS blocker significantly increased and L-Arg reduced the stimulatory effect of PGE(2) on ACTH and corticosterone secretion. The carbachol-induced corticosterone response was significantly increased by pretreatment with nNOS inhibitor L-NNA and was considerably reduced by indomethacin, a general COX inhibitor. Pretreatment with both antagonists left the carbachol-induced corticosterone level unchanged, suggesting an independent and reciprocal effect of NO and PG in the cholinergic stimulation of pituitary-adrenocortical response. These results indicate that in the stimulatory action of muscarinic agonist, carbachol, NO is an inhibitory transmitter under basal and crowding stress conditions. This psychosocial stress does not functionally affect the NOS/NO systems. Prostaglandins are involved in the cholinergic muscarinic-induced stimulation of HPA response to a significant extent in non-stressed rats. PGE(2) may be involved in the carbachol-elicited HPA response under basal and stress conditions. Prostaglandins released in response to muscarinic stimulation did not evoke the hypothalamic CRH mediation. NO significantly impairs and PG stimulates the carbachol-induced HPA response in rats under basal and social stress conditions.  相似文献   

18.
Nicotine is a potent stimulus for the hypothalamic-pituitary-adrenal (HPA) axis. Systemic nicotine acts via central mechanisms to stimulate by multiple pathways the release of ACTH from the anterior pituitary corticotrops and corticosterone from the adrenal cortex. Nicotine may stimulate indirectly the hypothalamic paraventricular nucleus, the site of the corticotropin-releasing hormone (CRH) neurons which activates ACTH release. In the present studies an involvement of adrenergic system and prostaglandins synthesized by constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2) in the nicotine-induced HPA response in rats was investigated. Nicotine (2.5-5 mg/kg i.p.) significantly increased plasma ACTH and corticosterone levels measured 1 hr after administration. Adrenergic receptor antagonists or COX inhibitors were injected i.p. 15 min prior to nicotine and the rats were decapitated 1 hr after the last injection. Prazosin (0.01-0.1 mg/kg), an alpha1-adrenergic antagonist, significantly decreased the nicotine-evoked ACTH and corticosterone secretion. Yohimbine (0.1-1.0 mg/kg), an alpha2-adrenergic antagonist, moderately diminished ACTH response, and propranolol (0.1-10 mg/kg), a beta-adrenergic antagonist, did not significantly alter the nicotine-induced hormones secretion. Pretreatment with piroxicam (0.2-2.0 mg/kg), a COX-1 inhibitor, considerably impaired the nicotine-induced ACTH and corticosterone secretion. Compound NS-398 (0.2-5.0 mg/kg), a selective COX-2 blocker did not markedly alter these hormones secretion, and indomethacin (2 mg/kg), a non-selective COX inhibitor significantly diminished ACTH response. These results indicate that systemic nicotine stimulates the HPA axis indirectly, and both adrenergic system and prostaglandins are significantly involved in this stimulation. Noradrenaline, stimulating postsynaptic alpha1-adrenergic receptors, and prostaglandins, synthesized by COX-1 isoenzyme, are of crucial significance in the nicotine-induced ACTH and corticosterone secretion.  相似文献   

19.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

20.
Acute nicotine administration has been shown to activate the hypothalamic-pituitary-adrenal (HPA) axis and stimulate secretion of adrenocorticotrophic hormone (ACTH), corticosterone/cortisol and beta-endorphin (beta-END) in both rodents and humans, raising the possibility that activation of the HPA axis by nicotine may mediate some of the effects of nicotine. Since stress can increase the risk of drug use and abuse, we hypothesized that repeated stress would increase the ability of nicotine to stimulate the secretion of HPA hormones. To test our hypothesis, mice were exposed to repeated stress (swimming in 15 degrees C water for 3 min/day for 5 days) and killed 15 min after injection of saline or nicotine (0.1 mg/kg, s.c.). Repeated exposure to stress increased the ability of nicotine to stimulate plasma ACTH (p<0.05) and beta-END (p<0.05), but not corticosterone secretion. In contrast, repeated exposure to stress increased the post-saline injection levels of corticosterone (p<0.05), but not ACTH and beta-END. The present results suggest that chronic stress leads to an enhanced sensitivity of some components of the HPA axis to a subsequent nicotine challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号