首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local adaptation within and among populations may have an impact on processes ranging from speciation to the evolution of mixed breeding systems and dispersal strategies. It is also one potential factor that could favor the production of asexual over sexual propagules. This field experiment tested whether asexually produced bulbils of Allium vineale demonstrate local adaptation to the parental microsite at the scale of natural dispersal from the parent (5, 25, 50, 100, and 1000 cm). Both "home' and randomly chosen "away' genotypes were planted at each location to determine the relative performance of the "home' genotype. Overall, bulbil performance declined with distance from the parent. In particular, "home' bulbils outperformed "away' bulbils at a distance of 25 cm from the parent, indicating that local adaptation has occurred at the scale of natural dispersal in this species. The variance in propagule performance also increased at farther distances from the parent, indicating that the predictability of offspring performance decreases with distance. Fine-scale local adaptation within the range of seed dispersal in this population may be one factor favoring asexual reproduction in Allium vineale.  相似文献   

2.
Propagation, whether sexual or asexual, is a fundamental step in the life cycle of every organism. In lichenized fungi, a great variety of vegetative propagules have evolved in order for the symbiotic partners to disperse simultaneously. For lichens with the ability of sexual and asexual reproduction, the relative contribution of vegetative dispersal is unknown but could, nonetheless, be inferred by studying genotype distribution. The genetic structure of three Lobaria pulmonaria (Lobariaceae) populations from Switzerland was investigated based on the observed variation at six microsatellite loci. All three populations had a clustered distribution of identical genotypes at small spatial scales. The maximum distance between identical genotypes was 230 m. At a distance of 350 m from a source tree, seemingly suitable habitat patches were too far apart to be colonized. Some multilocus genotypes were frequent within local populations but no genotypes were shared among populations. The restricted occurrences of common genotypes as well as the clustered distributions are evidence for a limited dispersal of vegetative propagules in L. pulmonaria. Gene flow among isolated populations will ultimately depend on the capacity of long-distance dispersal and thus probably depend on sexual reproduction.  相似文献   

3.
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient.  相似文献   

4.
This paper reviews the use of genetic data, in combination with manipulative experimentation, to infer the mode of reproduction and the extent and directionality of dispersal for a range of Australian temperate marine invertebrates. Local populations of obligately sexually reproducing species have been inferred to be strongly interconnected by larval dispersal, over distances of thousands of kilometres. Their larvae may be subject to strong post-settlement selection, but this selection is independent of obvious geographic or intertidal gradients. Within local populations selection may therefore result in apparently chaotic genetic patchiness which is eliminated by the effects of sexual reproduction and the widespread dispersal and mixing of the colonizing larvae of each generation. In partial contrast, local populations of species which rely on asexual reproduction for the maintenance of populations show evidence of similar larval connections, but no recent settlement of their sexually generated larvae has been demonstrated. The apparent connectedness of these populations may reflect either historical events or a more episodic pattern of settlement by sexually generated larvae. Local populations of these species are more highly differentiated as a result of the continued asexual replication of a limited number of genotypes. In one of these species, reciprocal transplantation of the clones within and among populations has revealed that resident clones can be highly locally adapted (as reflected by much higher asexual fecundity), which implies that selection is an important determinant of the composition of local populations. Nevertheless, the failure to detect continuing sexual recruitment into these populations obscures the evolutionary significance of this finding.  相似文献   

5.
Ras and Rho GTPases have been examined in a wide variety of eukaryotes and play varied and often overlapping roles in cell polarization and development. Studies in Saccharomyces cerevisiae and mammalian cells have defined some of the central activities of these GTPases. However, these paradigms do not explain the role of these proteins in all eukaryotes. Unlike yeast, but like more complex eukaryotes, filamentous fungi have Rac-like proteins in addition to Ras and Cdc42. To investigate the unique functions of these proteins and determine how they interact to co-ordinately regulate morphogenesis during growth and development we undertook a genetic analysis of GTPase function by generating double mutants of the Rho GTPases cflA and cflB and the newly isolated Ras GTPase rasA from the dimorphic pathogenic fungus, Penicillium marneffei. P. marneffei growth at 25 degrees C is as multinucleate, septate, branched hyphae which are capable of undergoing asexual development (conidiation), while at 37 degrees C, uninucleate pathogenic yeast cells which divide by fission are produced. Here we show that RasA (Ras) acts upstream of CflA (Cdc42) to regulate germination of spores and polarized growth of both hyphal and yeast cells, while also exhibiting CflA-independent activities. CflA (Cdc42) and CflB (Rac) co-ordinately control hyphal cell polarization despite also having unique roles in regulating conidial germination and polarized growth of yeast cells (CflA) and polarized growth of conidiophore cell types and hyphal branching (CflB).  相似文献   

6.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

7.
We analyze the joint evolution of an ecological character and of dispersal distance in asexual and sexual populations inhabiting an environmental gradient. Several interesting phenomena resulting from the evolutionary interplay of these characters are revealed. First, asexual and sexual populations exhibit two analogous evolutionary regimes, in which either speciation in the ecological character occurs in conjunction with evolution of short-range dispersal, or dispersal distance remains high and speciation does not occur. Second, transitions between these two regimes qualitatively differ between asexual and sexual populations, with the former showing speciation with long-range dispersal and the latter showing no speciation with short-range dispersal. Third, a phenotypic gradient following the environmental gradient occurs only in the last case, i.e., for non-speciating sexual populations evolving towards short-range dispersal. Fourth, the transition between the evolutionary regimes of long-range dispersal with no speciation and short-range dispersal with speciation is typically abrupt, mediated by a positive feedback between incipient speciation and the evolution of short-range dispersal. Fifth, even though the model of sexual evolution analyzed here does not permit assortative mating preferences, speciation occurs for a surprisingly wide range of conditions. This illustrates that dispersal evolution is a powerful alternative to preference evolution in enabling spatially distributed sexual populations to respond to frequency-dependent disruptive selection.  相似文献   

8.
Genetic differentiation between spatially separated populations within a species is commonly observed in plants and animals, but its existence in microbes has long been a contentious issue. Traditionally, many microbial ecologists have reasoned that microbes are not limited by dispersal as a result of their immense numbers and microscopic size. In this view, the absence of barriers to gene flow between populations would prevent differentiation of populations by genetic drift and hinder local adaptation. Myxococcus xanthus is a globally distributed, spore-forming bacterium that offers a robust test for genetic differentiation among populations because sporulation is expected to enhance dispersal. Using multi-locus sequence data, we show here that both diversity and the degree of differentiation between populations increase as a function of distance in M. xanthus. Populations are consistently differentiated at scales exceeding 10(2)-10(3) km, and isolation by distance, the divergence of populations by genetic drift due to limited dispersal, is responsible. Our results provide new insights into how genetic diversity within species of free-living microbes is distributed from centimeter to global scales.  相似文献   

9.
The nature of population structure in microbial eukaryotes has long been debated. Competing models have argued that microbial species are either ubiquitous, with high dispersal and low rates of speciation, or that for many species gene flow between populations is limited, resulting in evolutionary histories similar to those of macroorganisms. However, population genomic approaches have seldom been applied to this question. Here, we analyse whole‐genome resequencing data for all 36 confirmed field isolates of the green alga Chlamydomonas reinhardtii. At a continental scale, we report evidence for putative allopatric divergence, between both North American and Japanese isolates, and two highly differentiated lineages within N. America. Conversely, at a local scale within the most densely sampled lineage, we find little evidence for either spatial or temporal structure. Taken together with evidence for ongoing admixture between the two N. American lineages, this lack of structure supports a role for substantial dispersal in C. reinhardtii and implies that between‐lineage differentiation may be maintained by reproductive isolation and/or local adaptation. Our results therefore support a role for allopatric divergence in microbial eukaryotes, while also indicating that species may be ubiquitous at local scales. Despite the high genetic diversity observed within the most well‐sampled lineage, we find that pairs of isolates share on average ~9% of their genomes in long haplotypes, even when isolates were sampled decades apart and from different locations. This proportion is several orders of magnitude higher than the Wright–Fisher expectation, raising many further questions concerning the evolutionary genetics of C. reinhardtii and microbial eukaryotes generally.  相似文献   

10.
Genotypic characteristics of the Cladocera   总被引:11,自引:10,他引:1  
Work on the genetics of cladocerans reproducing by cyclic parthenogenesis has indicated that populations usually include a large number of genotypes, whose frequencies are in close approximation to Hardy-Weinberg equilibrium. Less diverse genotypic arrays and pronounced instability in genotype frequencies occur only in permanent populations exposed to limited ephippial recruitment. Genetic diversification among local cladoceran populations is greater than in most other organisms as a consequence of the inefficiency of passive dispersal. Genotypic characteristics of cladocerans reproducing by obligate parthenogenesis are markedly different from those of cyclic parthenogens. Local populations include few clones, but genetic distances between them are often large and accompanied by significant ecological and morphological divergence. When considered over their entire range, cladoceran taxa reproducing by obligate asexuality are the most genotypically diverse asexual organisms known. This diversity has originated from the spread of a sex-limited meiosis suppressor through species that originally reproduced by cyclic parthenogenesis. The confused state of cladoceran taxonomy is partially a consequence of the presence of such obligately asexual groups, but also results from the occurrence of hybridization and sibling species. The genome size of cladocerans is exceptionally small and is associated with a large amount of endopolyploidy. Somatic tissues in adult cladocerans show a range in nuclear DNA content from 2–2048 c. DNA quantification studies have additionally revealed the frequent occurrence of polyploid clones in obligately asexual taxa.  相似文献   

11.
According to theory, sympatric speciation in sexual eukaryotes is favored when relatively few loci in the genome are sufficient for reproductive isolation and adaptation to different niches. Here we show a similar result for clonally reproducing bacteria, but which comes about for different reasons. In simulated microbial populations, there is an evolutionary tradeoff between early and late stages of niche adaptation, which is resolved when relatively few loci are required for adaptation. At early stages, recombination accelerates adaptation to new niches (ecological speciation) by combining multiple adaptive alleles into a single genome. Later on, without assortative mating or other barriers to gene flow, recombination generates unfit intermediate genotypes and homogenizes incipient species. The solution to this tradeoff may be simply to reduce the number of loci required for speciation, or to reduce recombination between species over time. Both solutions appear to be relevant in natural microbial populations, allowing them to diverge into ecological species under similar constraints as sexual eukaryotes, despite differences in their life histories.  相似文献   

12.
Giraud T 《Heredity》2004,93(6):559-565
This study explores the patterns of dispersal and mating of the anther smut Microbotryum violaceum, a model species in genetics and evolutionary biology. A French metapopulation of the fungus collected from its caryophyllaceous host Silene latifolia was analysed using microsatellites. The genetic diversity was low, populations were strongly differentiated, and there was no pattern of isolation by distance among populations. There was a strong deficit in heterozygotes, confirming the high self-fertilisation rates suggested by previous studies. Within populations there was a strong pattern of isolation by distance, with identical genotypes being highly clustered. This indicates that fungal spores are dispersed mostly between adjacent plants, and such local dispersal is important for understanding the dynamics and evolution of this disease. Local clusters of identical heterozygous genotypes did not contain significantly fewer individuals than did clusters of homozygous genotypes. As selfing between products of independent meiotic events (intertetrad selfing) rapidly reduces heterozygosity, this suggests that intratetrad matings are frequent, which helps to explain the puzzling maintenance of a sex-ratio distortion in M. violaceum.  相似文献   

13.
The role of among-species gene flow in eukaryotic evolution remains controversial. Putative hybrid lineages are common in water fleas, but their ecological success is often associated with polyploidy and the production of asexual propagules. Advanced hybrid lineages with sexual propagules are expected to be geographically restricted because their successful dispersal is contingent on overcoming fertility complications, assimilation by parent taxa, and competition with parent taxa. Here we provide evidence that a diploid lineage of Daphnia has been formed by introgression between distantly related species and attained a broad distribution (Nearctic) despite its requirement for sexual propagules. The evidence is based on geographical discordance, phylogenetic discordance, recombinant genotypes and additive genotypes of the nuclear internal transcribed spacer regions (ITS) and mitochondrial DNA. Additive genotypes also provided evidence of hybridization between introduced European Daphnia and North American Daphnia. We argue that the unique biology of Holarctic lacustrine water fleas and the spatial separation of lineages during Pleistocene glaciation have promoted hybridization and its evolutionary consequences.  相似文献   

14.
In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species’ range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long‐distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post‐glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.  相似文献   

15.
Amoebae are generally assumed to be asexual. We argue that this view is a relict of early classification schemes that lumped all amoebae together inside the 'lower' protozoa, separated from the 'higher' plants, animals and fungi. This artificial classification allowed microbial eukaryotes, including amoebae, to be dismissed as primitive, and implied that the biological rules and theories developed for macro-organisms need not apply to microbes. Eukaryotic diversity is made up of 70+ lineages, most of which are microbial. Plants, animals and fungi are nested among these microbial lineages. Thus, theories on the prevalence and maintenance of sex developed for macro-organisms should in fact apply to microbial eukaryotes, though the theories may need to be refined and generalized (e.g. to account for the variation in sexual strategies and prevalence of facultative sex in natural populations of many microbial eukaryotes). We use a revised phylogenetic framework to assess evidence for sex in several amoeboid lineages that are traditionally considered asexual, and we interpret this evidence in light of theories on the evolution of sex developed for macro-organisms. We emphasize that the limited data available for many lineages coupled with natural variation in microbial life cycles overestimate the extent of asexuality. Mapping sexuality onto the eukaryotic tree of life demonstrates that the majority of amoeboid lineages are, contrary to popular belief, anciently sexual, and that most asexual groups have probably arisen recently and independently. Additionally, several unusual genomic traits are prevalent in amoeboid lineages, including cyclic polyploidy, which may serve as alternative mechanisms to minimize the deleterious effects of asexuality.  相似文献   

16.
Most species of Penicillium are considered relatively benign with respect to causing human disease. However, one species, P. marneffei, has emerged as a significant pathogen particularly among individuals who live in Southeast Asia and are concurrently infected with the human immunodeficiency virus. While environmental and epidemiological studies have yet to resolve the reason for the heightened virulence of P. marneffi, one characteristic does distinguish this fungus from other Penicillium species. Whereas the latter grow as monomorphic moulds bearing typical asexual propagules (conidia), P. marneffei is thermally dimorphic. At room temperature, P. marneffei exhibits the morphology characteristic of the genus. In contrast to other Penicillia, though, P. marneffei grows as a yeast-like entity (arthroconidium) when found in diseased tissue or cultivated at 37 degrees C. Studies in our laboratory have focused on the differential gene expression between the mould and arthroconidial phases. Many of the genes whose expression differs during mould-to-arthrocondium transition are related to energy metabolism. A better understanding of gene expression during morphogenesis in P. marneffei may help detect unique target sites or cellular processes that can be exploited in the development of antifungal agents or immunomodulation therapies.  相似文献   

17.
Local adaptation in response to fine-scale spatial heterogeneity is well documented in terrestrial ecosystems. In contrast, in marine environments local adaptation has rarely been documented or rigorously explored. This may reflect real or anticipated effects of genetic homogenization, resulting from widespread dispersal in the sea. However, evolutionary theory predicts that for the many benthic species with complex life histories that include both sexual and asexual phases, each parental habitat patch should become dominated by the fittest and most competitive clones. In this study we used genotypic mapping to show that within headlands, clones of the sea anemone Actinia tenebrosa show restricted distributions to specific habitats despite the potential for more widespread dispersal. On these same shores we used reciprocal transplant experiments that revealed strikingly better performance of clones within their natal rather than foreign habitats as judged by survivorship, asexual fecundity, and growth. These findings highlight the importance of selection for fine-scale environmental adaptation in marine taxa and imply that the genotypic structure of populations reflects extensive periods of interclonal competition and site-specific selection.  相似文献   

18.
Asexual reproduction in the fissiparous holothurian species Stichopus chloronotus from eight populations between Madagascar and the Great Barrier Reef (total N=149) was investigated using Amplified fragment length polymorphism (AFLP) markers; and results compared to previous allozyme studies. Specifically, we tested the hypotheses that (1) genetic diversity in this species is reduced in the West Indian Ocean and that (2) some populations rely nearly exclusively on asexual reproduction. Using 21 polymorphic markers (obtained by two primer combinations) resulted in 51 genotypes in the whole sample, with up to 20 individuals (nearly all within populations) having the same genotype. These repeated genotypes most likely represent clones. In most populations, more than 50% of individuals were inferred to result from asexual reproduction. In two extreme populations, both of which are comprised nearly entirely of male individuals (Great Palm Island, Trou deau), only up to 20% of all individuals were sexually produced. Although, the genetic diversity in two populations of La Réunion was reduced, the fact that diversity is high in a third population and on Madagascar showed that low genetic diversity in S. chloronotus is not a general feature of the West Indian Ocean. Cluster analysis using Rogers genetic distance did not result in distinct geographic clusters. This supports previous suggestions that although asexual reproduction is important for the maintenance of populations, large distance dispersal of sexually produced larvae provides the genetic link between populations.  相似文献   

19.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

20.
Understanding how the biodiversity response to climate change will be modified at ecological scales, e.g. by species interactions, is a major challenge. Lichen epiphytes – the close interdependent relationship between a heterotrophic fungus and photosynthetic partner (photobiont) – are used here to explore how interaction regimes (between lichen species, and between lichens and their photobionts) explain distribution patterns along spatial climatic gradients. To do this we tested field evidence for the ‘core‐fringe hypothesis’, which proposes a facilitative interaction; sexually‐reproducing and spore‐dispersed lichens with a requirement for resynthesis with a compatible photobiont (Nostoc) are facilitated by the prior establishment of asexual lichens which disperse both the fungus and photobiont together. We used two closely related Nephroma species which differ in their reproductive mode – N. laevigatum (sexual spore‐dispersed) and N. parile (asexual) – and compared their occurrence along a bioclimatic gradient to local habitat factors, including the co‐occurrence of asexual lichens which have shared specificity for compatible Nostoc genotypes. The results showed that: 1) N. laevigatum is significantly more likely to occur on trees that have already been colonised by asexual lichens with shared specificity for Nostoc, supporting the core‐fringe hypothesis, while 2) N. parile is independent of this association (strengthening the core‐fringe hypothesis), with its response to a precipitation gradient modified by microhabitat factors. This positive test for the core‐fringe hypothesis demonstrates how interaction regimes can fundamentally alter expectations under climate change. There is an assumption that spore‐dispersed lichen species could more easily track their suitable bioclimatic space through fragmented habitat, compared to asexual species with larger and heavier propagules. However, the establishment of spore‐dispersed lichen epiphytes into new habitat may be limited by the dispersal rates of asexual species, which act as key facilitators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号