首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Although restraint stress accelerates colonic transit via a central corticotropin-releasing factor (CRF), the precise mechanism still remains unclear. We tested the hypothesis that restraint stress and central CRF stimulate colonic motility and transit via a vagal pathway and 5-HT(3) receptors of the proximal colon in rats. (51)Cr was injected via the catheter positioned in the proximal colon to measure colonic transit. The rats were subjected to a restraint stress for 90 min or received intracisternal injection of CRF. Ninety minutes after the administration of (51)Cr, the entire colon was removed, and the geometric center (GC) was calculated. Four force transducers were sutured on the proximal, mid, and distal colon to record colonic motility. Restraint stress accelerated colonic transit (GC of 6.7 +/- 0.4, n=6) compared with nonrestraint controls (GC of 5.1 +/- 0.2, n=6). Intracisternal injection of CRF (1.0 microg) also accelerated colonic transit (GC of 7.0 +/- 0.2, n=6) compared with saline-injected group (GC of 4.6 +/- 0.5, n=6). Restraint stress-induced acceleration of colonic transit was reduced by perivagal capsaicin treatment. Intracisternal injection of CRF antagonists (10 microg astressin) abolished restraint stress-induced acceleration of colonic transit. Stimulated colonic transit and motility induced by restraint stress and CRF were significantly reduced by the intraluminal administration of 5-HT(3) antagonist ondansetron (5 x 10(-6) M; 1 ml) into the proximal colon. Restraint stress and intracisternal injection of CRF significantly increased the luminal content of 5-HT of the proximal colon. It is suggested that restraint stress stimulates colonic motility via central CRF and peripheral 5-HT(3) receptors in conscious rats.  相似文献   

2.
Enterochromaffin (EC) cells of the epithelial cells release 5-HT into the lumen, as well as basolateral border. However, the physiological role of released 5-HT into the lumen is poorly understood. Concentrations of 5-HT in the colonic mucosa, colonic lumen, and feces were measured by HPLC in rats. To investigate whether intraluminal 5-HT accelerates colonic transit, 5-HT and (51)Cr were administered into the lumen of the proximal colon, and colonic transit was measured. To investigate whether 5-HT is released into the lumen, we used an ex vivo model of isolated vascularly and luminally perfused rat proximal colon. To investigate whether luminal 5-HT is involved in regulating stress-induced colonic motility, the distal colonic motility was recorded under the stress loading, and a 5-HT(3) receptor antagonist (ondansetron, 10(-6) M, 0.5 ml) was administered intraluminally of the distal colon. Tissue content of 5-HT in the proximal colon (15.2 +/- 4.3 ng/mg wet tissue) was significantly higher than that in the distal colon (3.3 +/- 0.7 ng/mg wet tissue), while fecal content and luminal concentration of 5-HT was almost the same between the proximal and distal colon. Luminal administration of 5-HT (10(-6)-10(-5) M) significantly accelerated colonic transit. Elevation of intraluminal pressure by 10 cmH(2)O significantly increased the luminal concentration of 5-HT but not the vascular concentration of 5-HT. Stress-induced stimulation of the distal colonic motility was significantly attenuated by the luminal administration of ondansetron. These results suggest that luminally released 5-HT from EC cells plays an important role in regulating colonic motility in rats.  相似文献   

3.
We studied whether physiological concentration of short-chain fatty acids (SCFAs) affects colonic transit and colonic motility in conscious rats. Intraluminal administration of SCFAs (100-200 mM) into the proximal colon significantly accelerated colonic transit. The stimulatory effect of SCFAs on colonic transit was abolished by perivagal capsaicin treatment, atropine, hexamethonium, and vagotomy, but not by guanethidine. The stimulatory effect of SCFAs on colonic transit was also abolished by intraluminal pretreatment with lidocaine and a 5-hydroxytryptamine (HT)(3) receptor antagonist. Intraluminal administration of SCFAs provoked contractions at the proximal colon, which migrated to the mid- and distal colon. SCFAs caused a significant increase in the luminal concentration of 5-HT of the vascularly isolated and luminally perfused rat colon ex vivo. It is suggested that the release of 5-HT from enterochromaffin cells in response to SCFAs stimulates 5-HT(3) receptors located on the vagal sensory fibers. The sensory information is transferred to the vagal efferent and stimulates the release of acetylcholine from the colonic myenteric plexus, resulting in muscle contraction.  相似文献   

4.
Tian SL  Wang XY  Ding GH 《Life sciences》2008,83(9-10):356-363
Acupuncture has been used in clinical trials for the treatment of abdominal pain in patients with irritable bowel syndrome (IBS). However, scientific evidence is still lacking and the underlying mechanism remains largely unexplored. The aim of this study was to examine the effects of repeated administration of electro-acupuncture (EA) on chronic visceral hypersensitivity and on the phosphorylation of spinal cord N-methyl-d-aspartic acid (NMDA) receptors in a rat model of IBS. The results showed that repeated administration of EA at bilateral points of Zu-san-li (ST-36) and Shang-ju-xu (ST-37) significantly attenuated chronic visceral hypersensitivity induced in young adult rats by neonatal colon irritation. Such an effect was not seen in either of the two controls: sham-EA at ST-36 and ST-37 without electrical stimulation and EA at control points (BL-62 and tail). Furthermore, rats with chronic visceral hypersensitivity exhibited high-level expression of phosphorylated NMDA receptor subunit 1 (pNR1) in the spinal cord (L4-L5 segments), which was markedly attenuated by EA treatment. In addition, EA at ST-36 and ST-37 neither altered the pain threshold of normal rats nor affected the expression of pNR1 in the lumbosacral spinal cord. Altogether, these data indicate that the EA-mediated attenuation of chronic visceral hypersensitivity is correlated with the down-regulation of NMDA receptors phosphorylation at the spinal level.  相似文献   

5.
Transneuronal tracing with pseudorabies virus (PRV) was used to identify sites in the central nervous system involved in the neural control of colon function. PRV-immunoreactive (IR) cells were primarily localized to the caudal lumbosacral (L6-S1) and caudal thoracic-rostral lumbar (T13-L1) spinal segments with the distribution varying according to survival time (72-96 h). In the lumbosacral spinal cord at all time points examined, significantly (PА.005) greater numbers of PRV-IR cells were present in the region of the sacral parasympathetic nucleus (SPN) of the S1 spinal segment compared to that of the L6 segment. These studies also revealed morphologically distinct cell types with a differential distribution (probably interneurons and preganglionic parasympathetic neurons) in the region of the SPN in the L6-S1 spinal segments following colon inoculation. PRV-labeled neurons were located at various levels of the neuraxis and at many sites had a distribution similar to that following injection of virus to other urogenital organs. However, some unique sites in the dorsal motor nucleus of the vagus, nucleus of the solitary tract, nucleus ambiguus and area postrema were also identified. To determine if labeling in these caudal medullary sites was mediated by spinal or vagal pathways, the colon was inoculated with PRV in animals with a complete spinal cord (T8) transection (5-7 days prior). Following spinal transection, PRV-infected cells were detected in the same caudal medullary regions; however, labeling in other regions (e.g., Barrington's nucleus) was eliminated or significantly reduced. These studies have yielded several novel observations concerning the central neural control of colonic function: (1) the preganglionic efferent and primary afferent innervation of the colon arises primarily from the S1 spinal segment; (2) the distribution of PRV-infected neurons in the central nervous system following colon inoculation was similar to that following PRV inoculation of other urogenital organs; (3) Barrington's nucleus, which has been identified previously as the pontine micturition center, may have a role in colonic function; and (4) PRV infection in Barrington's nucleus following colon inoculation is mediated by bulbospinal pathways whereas labeling in caudal medullary regions is mediated, at least in part, by vagal pathways.  相似文献   

6.
The effects of manual acupuncture on gastric motility were investigated in 35 conscious rats implanted with a strain gauge transducer. Twenty (57.1%) rats showed no cyclic groupings of strong contractions (type A), whereas 15 (42.9%) rats showed the phase III-like contractions of the migrating motor complex (type B) in the fasting gastric motility. Acupuncture at the stomach (ST)-36 (Zusanli), but not on the back [Weishu, bladder (BL)-21], increased the peak amplitude of contractions to 172.4 +/- 25.6% of basal in the type A rats (n = 20, P < 0.05). On the other hand, the motility index for 60 min after the acupuncture was not affected by the acupuncture in this group. On the contrary, acupuncture decreased the peak amplitude and motility index to 72.9 +/- 14.0% and 73.6 +/- 16.2% in the type B rats (n = 15, P < 0.05), respectively. The stimulatory and inhibitory effects of acupuncture observed in each type were reproducible on the separate days. In 70% of type A rats, acupuncture induced strong phase III-like contractions lasting for over 3 h that were abolished by atropine, hexamethonium, atropine methyl bromide, and vagotomy. Naloxone significantly shortened the duration of the stimulatory effects from 3.52 +/- 0.21 to 1.02 +/- 0.15 h (n = 3, P < 0.05). These results suggest that acupuncture at ST-36 induces dual effects, either stimulatory or inhibitory, on gastric motility. The stimulatory effects are mediated in part via vagal efferent and opioid pathways.  相似文献   

7.
Serotonin [5-hydroxytryptamine (5-HT)] acts as a modulator of colonic motility and secretion. We characterized the action of the 5-HT precursor 5-hydroxytryptophan (5-HTP) on colonic myenteric neurons and propulsive motor activity in conscious mice. Fos immunoreactivity (IR), used as a marker of neuronal activation, was monitored in longitudinal muscle/myenteric plexus whole mount preparations of the distal colon 90 min after an intraperitoneal injection of 5-HTP. Double staining of Fos IR with peripheral choline acetyltransferase (pChAT) IR or NADPH-diaphorase activity was performed. The injection of 5-HTP (0.5, 1, 5, or 10 mg/kg ip) increased fecal pellet output and fluid content in a dose-related manner, with a peak response observed within the first 15 min postinjection. 5-HTP (0.5-10 mg/kg) dose dependently increased Fos expression in myenteric neurons, with a maximal response of 9.9 +/- 1.0 cells/ganglion [P < 0.05 vs. vehicle-treated mice (2.3 +/- 0.6 cells/ganglion)]. There was a positive correlation between Fos expression and fecal output. Of Fos-positive ganglionic cells, 40 +/- 4% were also pChAT positive and 21 +/- 5% were NADPH-diaphorase positive in response to 5-HTP, respectively. 5-HTP-induced defecation and Fos expression were completely prevented by pretreatment with the selective 5-HT4 antagonist RS-39604. These results show that 5-HTP injected peripherally increases Fos expression in different populations of cholinergic and nitrergic myenteric neurons in the distal colon and stimulates propulsive colonic motor function through 5-HT4 receptors in conscious mice. These findings suggest an important role of activation of colonic myenteric neurons in the 5-HT4 receptor-mediated colonic propulsive motor response.  相似文献   

8.
Although acupuncture has a significant clinical benefit, the mechanism of acupuncture remains unclear. Vasopressin, a posterior pituitary hormone, is involved in nausea and vomiting in humans and dogs. To investigate the antiemetic effects of acupuncture on vasopressin-induced emesis, gastroduodenal motor activity and the frequency of retching and vomiting were simultaneously recorded in conscious dogs. In seven dogs, four force transducers were implanted on the serosal surfaces of the gastric body, antrum, pylorus, and duodenum. Gastroduodenal motility was continuously monitored throughout the experiment. Vasopressin was intravenously infused at a dose of 0.1 U x kg(-1) x min(-1) for 20 min. Electroacupuncture (EA, 1-30 Hz) at pericardium-6 (PC6), bladder-21 (BL21), or stomach-36 (ST36) was performed before, during, and after the vasopressin infusion. To investigate whether the opioid pathway is involved in EA-induced antiemetic effects, naloxone (a central and peripheral opioid receptor antagonist) or naloxone methiodide (a peripheral opioid receptor antagonist) was administered before, during, and after EA and vasopressin infusion. Intravenous infusion of vasopressin induced retching and vomiting in all dogs tested. Retrograde peristaltic contractions occurred before the onset of retching and vomiting. EA (10 Hz) at PC6 significantly reduced the number of episodes of retching and vomiting. EA at PC6 also suppressed retrograde peristaltic contractions. In contrast, EA at BL21 or ST36 had no antiemetic effects. The antiemetic effect of EA was abolished by pretreatment with naloxone but not naloxone methiodide. It is suggested that the antiemetic effect of acupuncture is mediated via the central opioid pathway.  相似文献   

9.
The aim of this study was to examine the relationship between colonic pressure waves and movement of content. In 11 healthy subjects, pressures were recorded at 10-cm intervals from cecum to rectum for 32 h. In six subjects, transit was simultaneously measured for 8 h after direct cecal instillation of 1.5 mCi of (99m)Tc sulfur colloid. Thirty-two percent of isotope movements were related to nonpropagating activity and twenty-eight percent to propagating sequences. The extent of isotope movement related to propagating sequences (25.1 +/- 2.1 cm) was greater than that due to nonpropagating activity (12.8 +/- 0.7 cm; P = 0.0001). Propagating sequences originated significantly more frequently (P = 0.004) and propagated further (P = 0.0006) in the proximal compared with the distal colon. Only 36% of propagating sequences were propulsive of content, and compared with nonpropulsive sequences, these propagated further (41 +/- 6 vs. 27 +/- 2 cm; P < 0.05) and had a higher probability of originating proximally (P = 0.0003), a higher pressure wave amplitude (50 +/- 5 vs. 34 +/- 4 mmHg; P = 0.0001), and slower velocity (2.2 +/- 0.3 vs. 3.6 +/- 0.47 cm/s; P = 0.02). We conclude that most movements of colonic content are related to pressure waves. There is marked regional variation in the prevalence, velocity, and extent of propagation of propagating pressure wave sequences, which are an important mechanism for transporting content over long distances. The effectiveness of transport by a propagating sequence is influenced by its site of origin, amplitude, and velocity.  相似文献   

10.
The mechanisms by which dopamine (DA) influences gastrointestinal (GI) tract motility are incompletely understood and complicated by tissue- and species-specific differences in dopaminergic function. To improve the understanding of DA action on GI motility, we used an organ tissue bath system to characterize motor function of distal colonic smooth muscle segments from wild-type and DA transporter knockout (DAT -/-) mice. In wild-type mice, combined blockade of D(1) and D(2) receptors resulted in significant increases in tone (62 +/- 9%), amplitude of spontaneous phasic contractions (167 +/- 24%), and electric field stimulation (EFS)-induced (40 +/- 8%) contractions, suggesting that endogenous DA is inhibitory to mouse distal colonic motility. The amplitudes of spontaneous phasic and EFS-induced contractions were lower in DAT -/- mice relative to wild-type mice. These differences were eliminated by combined D(1) and D(2) receptor blockade, indicating that the inhibitory effects of DA on distal colonic motility are potentiated in DAT -/- mice. Motility index was decreased but spontaneous phasic contraction frequency was enhanced in DAT -/- mice relative to wild-type mice. The fact that spontaneous phasic and EFS-induced contractile activity were altered by the lack of the DA transporter suggests an important role for endogenous DA in modulating motility of mouse distal colon.  相似文献   

11.
Objective: The purpose of this study was to determine the effects of electroacupuncture (EA) ST36 on food intake and body weight in obese prone (OP) rats compared to obese resistant (OR) strain on a high fat diet. The influences of EA on mRNA levels of pro-opiomelanocortin (POMC), transient receptor potential vanilloid type-1 (TRPV1), and neuronal nitric oxide synthase (nNOS) were also examined in the medulla regions and ST36 skin tissue. Methods: Advanced EA ST36 was conducted in two sessions of 20 min separated by an 80 min interval for 7 days. Food intake and body weight were recorded in conscious rats every day. Real time PCR was conducted in the micropunches of the medulla regions and skin tissues at the end of the treatment. Results: Food intake and body weight were significantly reduced by advanced EA ST36 in OP rats, but slightly decreased in OR strain and sham-EA rats. Advanced EA ST36 produced a marked increase in POMC mRNA level in the nucleus tractus solitarius (NTS) and hypoglossal nucleus (HN) regions. TRPV1 and nNOS mRNAs were simultaneously increased in the NTS/gracile nucleus regions and in the ST36 skin regions by the EA treatment in OP rats. Conclusions: We conclude that advanced EA ST36 produces an up-regulation of anorexigenic factor POMC production in the NTS/HN, which inhibits food intake and reduces body weight. EA-induced expression of TRPV1-nNOS in the ST36 and the NTS/gracile nucleus is involved in the signal transduction of EA stimuli via somatosensory afferents-medulla pathways.  相似文献   

12.
Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS.  相似文献   

13.
The effect of morphine on colonic motility was investigated by recording the colonic myoelectric spiking activity by means of a 50 cm long silastic tube equipped with 4 bipolar AgAgCl ring electrodes fixed at 10 cm intervals that was introduced into the left colon in 8 healthy subjects by flexible sigmoidoscopy. Tracings were obtained for 1 hour in the fasting state and for another 1 hour after i.m. injection of morphine sulphate 0.15 mg/kg. The different types of spike bursts were compared before and after morphine injection. The control tracings showed that the spiking activity of the colon was made of 2 types: 1)- Rhythmic Stationary Spike Bursts (RSB), that were seen at only one electrode site; 2)- Sporadic Bursts, that were either propagating over all 4 electrodes (SPB) or non propagating (SNPB). Injection of morphine was followed by 1)- a considerable increase in the number of RSB from 107 +/- 43 bursts/hour (mean +/- SEM) to 491 +/- 23 bursts/hour; 2)- the complete disappearance of the SPB dropping from 7.3 +/- 2.0 bursts/hour to 0.3 +/- 0.2 bursts/hour; 3)- no significant change in SNPB (from 52 +/- 4 bursts/hour to 57 +/- 5 bursts/hour). These results indicate that 1)- stimulation of colonic smooth muscle activity by morphine seems to result from an increase in the number of rhythmic stationary bursts; 2)- however inhibition of colonic transit may be related to the decrease in the number of sporadic propagating bursts.  相似文献   

14.
We reported previously that mechanical stretch in rat colonic obstruction induces cyclooxygenase (COX)-2 expression in smooth muscle cells. The aims of the present study were to investigate whether in vivo treatment with COX-2 inhibitor has prophylactic and therapeutic effects on motility dysfunction in colon obstruction, and if so what are the underlying mechanisms. Partial colon obstruction was induced with a silicon band in the distal colon of 6-8-wk-old Sprague-Dawley rats; obstruction was maintained for 3 days or 7 days. Daily administration of COX-2 inhibitor NS-398 (5 mg/kg) or vehicle was started before or after the induction of obstruction to study its prophylactic and therapeutic effects, respectively. The smooth muscle contractility was significantly suppressed, and colonic transit rate was slower in colonic obstruction. Prophylactic treatment with NS-398 significantly prevented the impairments of colonic transit and smooth muscle contractility and attenuated fecal collection in the occluded colons. When NS-398 was administered therapeutically 3 days after the initiation of obstruction, the muscle contractility and colonic transit still improved on day 7. Obstruction led to marked increase of COX-2 expression and prostaglandin E(2) (PGE(2)) synthesis. Exogenous PGE(2) decreased colonic smooth muscle contractility. All four PGE(2) E-prostanoid receptor types (EP1 to EP4) were detected in rat colonic muscularis externa. Treatments with EP1 and EP3 antagonists suppressed muscle contractility in control tissue but did not improve contractility in obstruction tissue. On the contrary, the EP2 and EP4 antagonists did not affect control tissue but significantly restored muscle contractility in obstruction. We concluded that our study shows that COX-2 inhibitor has prophylactic and therapeutic benefits for motility dysfunction in bowel obstruction. PGE(2) and its receptors EP2 and EP4 are involved in the motility dysfunction in obstruction, whereas EP1 and EP3 mediate PGE(2) regulation of colonic smooth muscle contractile function in normal state.  相似文献   

15.
Colonic migrating motor complexes (CMMCs) are spontaneous, anally propagating constrictions, repeating every 3-5 min in mouse colon in vitro. They are regulated by the enteric nervous system and may be equivalent to mass movement contractions. We examined postnatal development of CMMCs and circular muscle innervation to gain insight into mechanisms regulating transit in the maturing colon. Video recordings of mouse colon in vitro were used to construct spatiotemporal maps of spontaneous contractile patterns. Development of nitric oxide synthase (NOS) and cholinergic nerve terminals in the circular muscle was examined immunohistochemically. In adults, CMMCs appeared regularly at 4.6 +/- 0.9-min intervals (n = 5). These intervals were reduced by inhibition of NOS (2.7 +/- 0.2 min; n = 5; P < 0.05). CMMCs were abolished by tetrodotoxin (n = 4). CMMCs at postnatal day (P)10 were indistinguishable from adult. At birth and P4, CMMCs were absent. Instead, small constrictions that propagated both orally and anally, "ripples," were seen. Ripples were unaffected by tetrodotoxin or inhibition of NOS and were present in Ret(-/-) mice (which lack enteric neurons) at embryonic day 18.5. In P6 mice, only ripples were seen in control, but NOS inhibition induced CMMCs (n = 8). NOS terminals were abundant in the circular muscle at birth; cholinergic terminals were sparse but were common by P10. In mouse, myogenic ripples are the only mechanism available to produce colonic transit at birth. At P6, neural circuits that generate CMMCs are present but are inhibited by tonic activity of nitric oxide. Adult patterns appear by P10.  相似文献   

16.
Rectal distension (RD) is known to induce upper gastrointestinal (GI) symptoms. The aim of this study was to investigate the effects and underlying mechanisms of RD on gastric slow waves (GSW) and motor activity and furthermore to investigate the effects and mechanisms of electroacupuncture (EA) on GSW and motor activity. Eight female hound dogs chronically implanted with gastric serosal electrodes and a gastric fistula were studied in six separate sessions. Antral motility, GSW, heart rate variability, and rectal pressure were evaluated for the above purposes. 1) RD at a volume of 120 ml suppressed antral motility significantly. Guanethidine blocked the inhibitory effect of RD. EA at ST36 was able to restore the suppressed antral contractions induced by RD (16.6+/-1.7 vs. 8.0+/-1.4, P<0.001). Naloxone partially blocked the effect of EA on antral contractions. 2) RD reduced the percentage of normal GSW from 98.8+/-0.8% at baseline to 76.1+/-8.6% (P<0.05) that was increased to 91.8+/-3.0% with EA. The effects of EA on the GSW were nullified by the presence of naloxone. 3) EA did not show any significant effect on rectal pressure, suggesting that the ameliorating effects of EA on RD-induced impaired gastric motility were not due to a decrease in rectal pressure. 4) EA increased the vagal activity suppressed by RD. In conclusion, RD inhibits postprandial gastric motility and impairs GSW in dogs, and the inhibitory effects are mediated via the adrenergic pathways. EA at ST36 is able to restore the RD-induced impaired GSW and motor activities, possibly by enhancing vagal activity, and is partially mediated via the opioid pathway. EA may have therapeutic potential for functional gastrointestinal disorders.  相似文献   

17.
Gastrointestinal clinical pharmacology of peppermint oil   总被引:4,自引:0,他引:4  
In nine studies, 269 healthy subjects or patients underwent exposure to peppermint oil (PO) either by topical intraluminal (stomach or colon) or oral administration by single doses or 2 weeks treatment (n = 19). Methods used to detect effects were oro-cecal transit time by hydrogen expiration, total gastrointestinal transit time by carmine red method, gastric emptying time by radiolabelled test meal or sonography, direct observation of colonic motility or indirect recording through pressure changes or relieve of colonic spasms during barium enema examination. The dose range covered in single dose studies is 0.1-0.24ml of PO/subject. With one exception, which show an unexplained potentiation of neostigmine stimulated colon activity, all other studies result in effects, indicating a substantial spasmolytic effect of PO of the smooth muscles of the gastrointestinal tract. Pharmacokinetic studies reveal that fractionated urinary recovery of menthol is dependent on the kind of formulation used for the application of PO. Optimal pH triggered enteric coated formulations start releasing PO in the small intestine extending release over 10-12 h thus providing PO to the target organ in irritable bowel syndrome, i.e. the colon. The hypothesis is supported by anecdotal observations in patients with achlorhydria or ileostoma, respectively.  相似文献   

18.
Intestinal transit of gas is normally adapted to the luminal gas load, but in some patients impaired transit may lead to gas retention and symptoms. We hypothesized that intestinal gas transit is regulated by reflex mechanisms released by segmental distension at various gut levels. In 24 healthy subjects, we measured gas evacuation and perception of jejunal gas infusion (12 ml/min) during simultaneous infusion of duodenal lipids mimicking the postprandial caloric load (Intralipid, 1 kcal/min). We evaluated the effects of proximal (duodenal) distension (n = 8), distal (rectal) distension (n = 8), and sham distension, as control (n = 8). Duodenal lipid infusion produced gas retention (366 +/- 106 ml) with low abdominal perception (1.5 +/- 0.8 score). Distension of either the duodenum or rectum during lipid infusion expedited gas transit and prevented retention (-120 +/- 164 and -124 +/- 162 ml retention, respectively; P < 0.05 vs. control). However, the tolerance to the intestinal gas load differed markedly, depending on the site of distension; perception remained low during rectal distension (2.6 +/- 0.7 score; not significant vs. control) but increased during duodenal distension (4.4 +/- 0.7 score; P < 0.05 vs. control). We conclude that focal gut distension, either at proximal or distal sites, accelerates gas transit, but the symptomatic response depends on the site of stimulation.  相似文献   

19.
The goal of this study was to determine the baroreflex influence on systolic arterial pressure (SAP) and pulse interval (PI) variability in conscious mice. SAP and PI were measured in C57Bl/6J mice subjected to sinoaortic deafferentation (SAD, n = 21) or sham surgery (n = 20). Average SAP and PI did not differ in SAD or control mice. In contrast, SAP variance was enhanced (21 +/- 4 vs. 9.5 +/- 1 mmHg2) and PI variance reduced (8.8 +/- 2 vs. 26 +/- 6 ms2) in SAD vs. control mice. High-frequency (HF: 1-5 Hz) SAP variability quantified by spectral analysis was greater in SAD (8.5 +/- 2.0 mmHg2) compared with control (2.5 +/- 0.2 mmHg2) mice, whereas low-frequency (LF: 0.1-1 Hz) SAP variability did not differ between the groups. Conversely, LF PI variability was markedly reduced in SAD mice (0.5 +/- 0.1 vs. 10.8 +/- 3.4 ms2). LF oscillations in SAP and PI were coherent in control mice (coherence = 0.68 +/- 0.05), with changes in SAP leading changes in PI (phase = -1.41 +/- 0.06 radians), but were not coherent in SAD mice (coherence = 0.08 +/- 0.03). Blockade of parasympathetic drive with atropine decreased average PI, PI variance, and LF and HF PI variability in control (n = 10) but had no effect in SAD (n = 6) mice. In control mice, blockade of sympathetic cardiac receptors with propranolol increased average PI and decreased PI variance and LF PI variability (n = 6). In SAD mice, propranolol increased average PI (n = 6). In conclusion, baroreflex modulation of PI contributes to LF, but not HF PI variability, and is mediated by both sympathetic and parasympathetic drives in conscious mice.  相似文献   

20.
Zhu JX  Tang JS  Jia H 《生理学报》2004,56(6):697-702
本文旨在研究阿片受体是否参与丘脑中央下核(nucleus submedius,Sm)和顶盖前区前核(anterior pretectal nucleus,APtN)所介导的不同强度电针的镇痛作用。以辐射热诱发甩尾(tail flick,TF)反射潜伏期为伤害性反应的指标,观察了Sm和APtN微量注射阿片受体拮抗剂纳洛酮对不同强度电针“足三里”穴(St.36)抑制大鼠TF反射的效应。结果表明,Sm给予纳洛酮(1.0μg,0.5μl)阻断强电针(5mA)对TF反射的抑制效应,而对弱电针(0.5mA)的效应无明显影响;相反,APtN给予纳洛酮阻断弱电针对TF反射的抑制效应,而对强电针的效应无明显影响;纳洛酮供给到Sm或APtN邻近其它脑区对强、弱电针的效应均无影响。这些结果提示,Sm内的阿片受体参与介导强电针兴奋细传入纤维(A-δ和C类)产生的镇痛,而APtN内的阿片受体则介导弱电针兴奋粗传入纤维(A-β类)产生的镇痛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号