首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Footprint analysis of gait using a pressure sensor system.   总被引:12,自引:0,他引:12  
The purpose of this study was to investigate if the detailed pressure data of the footprints of normal gait add essential information to the spatio-temporal variables of gait. The gait of 62 healthy adult subjects was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. A typical activation pattern of the sensors with two peaks of active area and peak pressure distribution during normal walking was obtained. The first peak reflected the heel strike, and the second peak reflected push-off at the end of the stance phase. The lowest pressure values were in the midfoot, where the lateral part of the foot activated sensors more than the medial part. The footprint patterns of right and left legs were symmetrical and corresponded with the symmetry found in the spatio-temporal variables of gait. The variability for the active area and the peak pressure were more pronounced for the lateral part of the midfoot and a smaller variation was seen in areas with concentrated observations (e.g. 1st, 2nd and 5th lateral trapezoids). Increasing active area in the forefoot was associated with decreasing pressure sensor activity in the midfoot. The footprint patterns identified the symmetry between the legs and at the same time revealed the velocity performance.  相似文献   

2.
In this study we describe an ambulatory system for estimation of spatio-temporal parameters during long periods of walking. This original method based on wavelet analysis is proposed to compute the values of temporal gait parameters from the angular velocity of lower limbs. Based on a mechanical model, the medio-lateral rotation of the lower limbs during stance and swing, the stride length and velocity are estimated by integration of the angular velocity. Measurement's accuracy was assessed using as a criterion standard the information provided by foot pressure sensors. To assess the accuracy of the method on a broad range of performance for each gait parameter, we gathered data from young and elderly subjects. No significant error was observed for toe-off detection, while a slight systematic delay (10 ms on average) existed between heelstrike obtained from gyroscopes and footswitch. There was no significant difference between actual spatial parameters (stride length and velocity) and their estimated values. Errors for velocity and stride length estimations were 0.06 m/s and 0.07 m, respectively. This system is light, portable, inexpensive and does not provoke any discomfort to subjects. It can be carried for long periods of time, thus providing new longitudinal information such as stride-to-stride variability of gait. Several clinical applications can be proposed such as outcome evaluation after total knee or hip replacement, external prosthesis adjustment for amputees, monitoring of rehabilitation progress, gait analysis in neurological diseases, and fall risk estimation in elderly.  相似文献   

3.
4.
Most clinical gait analyses are conducted using motion capture systems which track retro-reflective markers that are placed on key landmarks of the participants. An alternative to a three-dimensional (3D) motion capture, marker-based, optical camera system may be a marker-less video-based tracking system. The aim of our study was to investigate the efficacy of the use of a marker-less tracking system in the calculation of 3D joint angles for possible use in clinical gait analysis. Ten participants walked and jogged on a treadmill and their kinematic data were captured with a marker and marker-less tracking system simultaneously. The hip, knee and ankle angles in the frontal, sagittal and transverse planes were computed. Root Mean Square differences (RMSdiff) between corresponding angles for each participant’s support phase were calculated and averaged to derive the mean within-subject RMSdiff. These within-subject means were averaged to obtain the mean between-subject RMSdiff for the relevant joint angles in the two gait conditions (walking and jogging). The RMSdiff between the two tracking systems was less than 1° for all rotations of the three joint angles of the hip and knee. However, there were slightly larger differences in the ankle joint angles. The results of this study suggest a potential application in gait analysis in clinical settings where observations of anatomical motions may provide meaningful feedback.  相似文献   

5.
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.  相似文献   

6.
The currents through single Na+ channels were recorded from dissociated cells of the flexor digitorum brevis muscle of the mouse. At 15 degrees C the prolonged bursts of Na+ channel openings produced by application of the drug DPI 201-106 had brief sojourns to subconductance levels. The subconductance events were relatively rare and brief, but could be identified using a new technique that sorts amplitude estimates based on their variance. The resulting "levels histogram" had a resolution of the conductance levels during channel activity that was superior to that of standard amplitude histograms. Cooling the preparation to 0 degrees C prolonged the subconductance events, and permitted further quantitative analysis of their amplitudes, as well as clear observations of single-channel subconductance events from untreated Na+ channels. In all cases the results were similar: a subconductance level, with an amplitude of roughly 35% of the fully open conductance and similar reversal potential, was present in both drug-treated and normal Na+ channels. Drug-treated channels spent approximately 3-6% of their total open time in the subconductance state over a range of potentials that caused the open probability to vary between 0.1 and 0.9. The summed levels histograms from many channels had a distinctive form, with broader, asymmetrical open and substate distributions compared with those of the closed state. Individual subconductance events to levels other than the most common 35% were also observed. I conclude that subconductance events are a normal subset of the open state of Na+ channels, whether or not they are drug treated. The subconductance events may represent a conformational alteration of the channel that occurs when it conducts ions.  相似文献   

7.
8.
Hemiplegic gait: a kinematic analysis using walking speed as a basis.   总被引:8,自引:0,他引:8  
The kinematics of treadmill ambulation of stroke patients (N = 9) and healthy subjects (N = 4) was studied at a wide range of different velocities (i.e. 0.25-1.5 m s-1), with a focus on the transverse rotations of the trunk. Video recordings revealed, for both stroke patients and healthy subjects, similar relations between walking speed and stride length as well as stride frequency. The phase difference between pelvic and thoracic rotations (i.e. trunk rotation) and the total range of trunk rotation were almost linearly related to the walking speed. Healthy subjects showed a marked increase in pelvic rotation from 1 to 1.5 m s-1. Using dimensional analysis in a comparison between stroke patients and healthy subjects, invariances in the coordination of gait were found for stride length, stride frequency, pelvic rotation, and trunk rotation. Constant relations were obtained between, on the one hand, dimensionless velocity and, on the other, dimensionless stride length as well as stride frequency. Transitions were found between the velocities 0.75 and 1 m s-1 for dimensionless pelvic rotation and trunk rotation, indicating that, from this velocity range onwards, pelvic swing lengthens the stride: rotations of pelvis, thorax and trunk become tightly coordinated. On the basis of the dimensionless stride length, stride frequency, pelvic rotation and trunk rotation, deficits in the gait of stroke patients could be quantified. It is concluded that walking speed is an important control parameter, which should be used as a basic variable in the evaluation of the gait of stroke patients.  相似文献   

9.
Human teeth with substantial coronal defects are subject to reconstruction by means of post-and-core restorations. Typically, such a restoration comprises a slightly cylindrical post onto which an abutment of varying shape, depending on the designated restoration, is attached. As clinical results are not satisfactory to date, a new post-and-core design which makes use of positive locking (rather than relying on chemical bonding agents for retention in the residual root) was proposed. Using proprietary burs, an inversely conical hole is machined into the root, into which the prefabricated post-and-core restoration is inserted. This part can be spread at the bottom to match the cavity's undercut form, resulting in a positive lock which can only be separated by destruction of root, restoration or both. Another key feature of this system is a ring/groove geometry which is able to absorb the wedging forces created by said spreading and the stress of loading of the restoration which arises from mascatory forces. To assess the properties, especially in terms of the stress imposed on the remaining tooth at highest possible loading, both finite element simulations and in vitro failure tests were performed and the findings compared. The results suggest that the parameters of the finite element simulations are in good agreement with reality. As calculated and measured force levels immediately before failure of the restoration are high, the introduced new geometry has significant advantages over the classical restoration.  相似文献   

10.
As a cost-effective, clinician-friendly gait assessment tool, the Kinect v2 sensor may be effective for assessing lower extremity joint kinematics. This study aims to examine the validity of time series kinematical data as measured by the Kinect v2 on a flatland for gait assessment. In this study, 51 healthy subjects walked on a flatland while kinematic data were extracted concurrently using the Kinect and Vicon systems. The kinematic outcomes comprised the hip and knee joint angles. Parallel translation of Kinect data obtained throughout the gait cycle was performed to minimize the differences between the Kinect and Vicon data. The ensemble curves of the hip and knee joint angles were compared to investigate whether the Kinect sensor can consistently and accurately assess lower extremity joint motion throughout the gait cycle. Relative consistency was assessed using Pearson correlation coefficients. Joint angles measured by the Kinect v2 followed the trend of the trajectories made by the Vicon data in both the hip and knee joints in the sagittal plane. The trajectories of the hip and knee joint angles in the frontal plane differed between the Kinect and Vicon data. We observed moderate to high correlation coefficients of 20%–60% of the gait cycle, and the largest difference between Kinect and Vicon data was 4.2°. Kinect v2 time series kinematical data obtained on the flatland are validated if the appropriate correction procedures are performed. Future studies are warranted to examine the reproducibility and systematic bias of the Kinect v2.  相似文献   

11.
Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using two-dimensional video collected from readily accessible devices (e.g., smartphones). To date, several studies have extracted features of human gait using markerless pose estimation. However, we currently lack evaluation of video-based approaches using a dataset of human gait for a wide range of gait parameters on a stride-by-stride basis and a workflow for performing gait analysis from video. Here, we compared spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-source video-based human pose estimation) against simultaneously recorded three-dimensional motion capture from overground walking of healthy adults. When assessing all individual steps in the walking bouts, we observed mean absolute errors between motion capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time, swing time and double support time) and 0.049 m for step lengths. Accuracy improved when spatiotemporal gait parameters were calculated as individual participant mean values: mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths. The greatest difference in gait speed between motion capture and OpenPose was less than 0.10 m s−1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion capture and OpenPose were 4.0°, 5.6° and 7.4°. Our analysis workflow is freely available, involves minimal user input, and does not require prior gait analysis expertise. Finally, we offer suggestions and considerations for future applications of pose estimation for human gait analysis.  相似文献   

12.
Systems physiology, studied by biomedical engineers, is an analytical way to approach the homeostatic foundations of basic physiology. In many systems physiology courses, students attend lectures and are given homework and reading assignments to complete outside of class. The effectiveness of this traditional approach was compared with an approach in which a wireless classroom communication system was used to provide instant feedback on in-class learning activities and reading assignment quizzes. Homework was eliminated in this approach. The feedback system used stimulated 100% participation in class and facilitated rapid formative assessment. The results of this study indicate that learning of systems physiology concepts including physiology is at least, as if not more, effective when in-class quizzes and activities with instant feedback are used in place of traditional learning activities including homework. When results of this study are interpreted in light of possible effects of the September 11, 2001 terrorist attacks on student learning in the test group, it appears that the modified instruction may be more effective than the traditional instruction.  相似文献   

13.
This paper describes a system for measuring the temporal and spatial parameters of gait. The basis of the system in a resistive grid walkway which is controlled by a microcomputer which also collects, processes and stores the data from the walkway. The data obtained from the system, including the temporal and spatial parameters of gait such as step and stride lengths, the durations of swing and support phases of the gait cycle and walking speed, are presented in both numerical and graphical forms. Accuracy to within 1 cm has been verified by analysing videotapes of foot placement during a walk. Special emphasis has been placed on making the system software user-friendly. The presentation of date uses several types of display, from a simple graphical summary of the walk statistics to a more complete report showing all the data from each stride. In the year during which the walkway system has been operational, it has been found easy to use by both subjects and operators, and it produces very useful data.  相似文献   

14.
15.
16.
A microcomputer-based video vector system has been developed to display the resultant ground reaction force vector on a television image of the subject in real-time. For each television field the force platform signals are acquired and processed and the resultant force vector superimposed on the video image of the walking subject. The force platform results are stored on disc and the composite video signals recorded on video tape for further analysis. The system is easy to set up and use and the results can be readily interpreted. The external moments produced at the joint centres by the ground reaction forces can be observed visually and, if required, quantification of the external moments can be achieved following data collection. The spatial resolution of the system is 0.342% vertically and 0.156% horizontally. The force vector visualization technique has routine applications in orthotics and prosthetics. It is also a useful technique for the teaching of biomechanics.  相似文献   

17.
Sheridan WF  Auger DL 《Genetics》2008,180(2):755-769
The B–A–A translocations have enabled us to simultaneously assess the possible dosage-sensitive interactions of two nonhomologous chromosome segments in affecting maize plant development. Maize B–A–A translocations contain segments of two nonhomologous essential A chromosomes in tandem arrangement attached to a segment of the long arm of a supernumerary B chromosome. By utilizing the frequent nondisjunction of the B centromere at the second pollen mitosis we produced plants containing an extra copy of the two A chromosome segments. We compared these hyperploid plants with nonhyperploid plants by measuring leaf width, plant height, ear height, internode length, stalk circumference, leaf length, and tassel-branch number in 20 paired families that involved one of the chromosome arms 1S, 1L, 4L, 5S, and 10L. One or more of the seven measured traits displayed dosage sensitivity among 17 of the 20 B–A–A translocations, which included the involvement of chromosome arms 2L, 3L, 5L, 6L, and 7L. The most obvious effect of an increased dosage of the B–A–A translocation was a significant decrease in the traits in the hyperploid plants. These effects may be either the additive effects of hyperploidy for the two chromosome segments or a result of gene interaction between them.  相似文献   

18.
The measurement of five gait parameters, namely, joint angular displacement of lower extremities, floor reaction forces, trajectory for a point of force application, temporal factor and distance factor has been performed with ease and high speed using mini-computer on-line real-time processing. Gait data of 211 patients with hip diseases was normalized, quantified and summarized by the principal component analysis. A 'gait evaluation plane' was formed according to the results obtained by the principal component analysis. The gait evaluation using the plane was compared with clinical conditions of patients, and it was evident that this system can evaluate the recovery of the gait by treatment.  相似文献   

19.
The stress distribution within the polyethylene insert of a total knee joint replacement is dependent on the kinematics, which in turn are dependent on the design of the articulating surfaces, the relative position of the components and the tension of the surrounding soft tissues. Implicit finite element analysis techniques have been used previously to examine the polyethylene stresses. However, these have essentially been static analyses and hence ignored the influence of the kinematics. The aim of this work was to use an explicit finite element approach to simulate both the kinematics and the internal stresses within a single analysis. A simulation of a total knee joint replacement subjected to a single gait cycle within a knee wear simulator was performed and the results were compared with experimental data.The predicted kinematics were in close agreement with the experimental data. Various solution-dependent parameters were found to have little influence on the predicted kinematics. The predicted stresses were found to be dependent on the mesh density. This study has shown that an explicit finite element approach is capable of predicting the kinematics and the stresses within a single analysis at relatively low computational cost.  相似文献   

20.
We established a new plant defense response assay using a transient expression system in rice protoplasts. The assay system sensitively detected defense induction by flagellin, which had previously been assigned to a specific elicitor. Our assay system provides a rapid and efficient way to dissect rice defense mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号