首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variable positions of a branch-migrating cruciform junction in supercoiled plasmid DNA were mapped following cleavage of the DNA with bacteriophage T7 endonuclease I. T7 endonuclease I specifically cleaved, and thereby resolved, the Holliday junction existing at the base of the cruciform in the circular bacterial plasmid pSA1B.56A. Cruciform extrusion of cloned sequences in pSA1B.56A (containing a 322 base-pair inverted repeat insert composed of poxvirus telomeric sequences) topologically relaxed the plasmid substrate in vitro. Thus, numerous crossover positions were identified within the region of cloned sequences, reflecting the range of superhelical densities in the native plasmid preparation. Endonuclease I-sensitive crossover positions, mapped to both strands of the viral insert following the T7 endonuclease I digestion of either plasmid preparations or individual topoisomers, were regularly separated by approximately ten nucleotides. The appearance of sensitive crossovers every ten nucleotides corresponds to a change in linking difference (delta Lk) of +/- 2 in the circular core domain of the plasmid during branch point migration. In contrast, individual topoisomers of a plasmid preparation differ in linking number in increments of +/- 1. Thus, the observed linearization of each individual topoisomer following enzyme treatment, as a result of resolution of the crossovers associated with each topoisomer, showed that branch point migration to sensitive crossover positions must have occurred facilely. T7 endonuclease I randomly resolved across either axis of the cruciform, though some discrimination (related to the sequence specificity of the enzyme) was observed. The ten-nucleotide spacing between sensitive crossover positions is accounted for by an isomerization of the cruciform junction on branch point migration. An hypothesis is that this isomerization was imposed upon the cruciform junction by the change in helix twist (delta Tw) in the two branches that compose the topologically closed, circular domain of the plasmid. T7 endonuclease I may discriminate between the various isomeric forms and cleave a sensitive conformation that appears with every turn of branch migration which leads to the extrusion, or absorption, of two turns of helix from the circular core.  相似文献   

2.
The physical chemistry of cruciform structures in supercoiled DNA molecules   总被引:1,自引:0,他引:1  
Inverted repeat DNA sequences extrude cruciform structures when present in negatively supercoiled molecules, stabilised by the release of torsional stress brought about by the negative twist change. We have revealed the presence of cruciform structures by means of enzyme and chemical probing experiments and topological band shift methods. The geometry of cruciform structures has been studied from two points of view. The unpairing of bases in the loop region has been investigated using bisulphite modification, with the result that the central four nucleotides have single-stranded character, and the next pair have only partially single-stranded nature. Gel electrophoretic studies of a pseudo-cruciform structure indicate that the cruciform junction introduces a pronounced bend into the molecule. The dependence of the formation of the ColE1 cruciform upon DNA supercoiling shows that it has a free energy of formation of 18.4 +/- 0.5 kcal mole-1. The kinetics of the extrusion process are complex. Most sequences extrude slowly with considerable temperature coefficients, but the detailed properties are strongly sequence-dependent. One synthetic inverted repeat sequence which we have studied in detail has an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole-1. We discuss possible mechanistic pathways for the extrusion process.  相似文献   

3.
Stress-induced cruciform formation in a cloned d(CATG)10 sequence.   总被引:2,自引:0,他引:2       下载免费PDF全文
The synthetic alternating purine-pyrimidine sequence, d(CATG)10.d(CATG)10, has been cloned into a 2.079-kb pBR322-derived plasmid (pLN1) and its conformation studied under torsional stress. The resultant plasmid, pLNc40, is hypersensitive to cleavage by the single strand-specific nucleases, S1 nuclease and Bal31 nuclease, and to modification by the single strand-selective reagent, osmium tetroxide. The S1-hypersensitive site of this plasmid predominates over those previously mapped in pBR322. Site-specific cleavage of pLNc40 with the resolvase T4 endonuclease VII demonstrates that this alternating purine-pyrimidine tract selectively forms a cruciform structure when stably integrated into a negatively supercoiled plasmid. Quantitative measurements of the twist change (-4.3 +/- 0.2) and free energy of formation (16.2 +/- 0.5 kcal/mol) of this cruciform have been made from two-dimensional gel electrophoresis experiments, and correspond well with the predicted values of cruciform formation for this sequence. We conclude that cruciform extrusion versus the B-Z transition is the favoured conformation of this insert under torsional stress.  相似文献   

4.
The transition from lineform DNA to cruciform DNA (cruciformation) within the cloned telomere sequences of the Leporipoxvirus Shope fibroma virus (SFV) has been studied. The viral telomere sequences have been cloned in recombination-deficient Escherichia coli as a 322 base-pair, imperfect palindromic insert in pUC13. The inverted repeat configuration is equivalent to the arrangement of the telomere structures observed within viral DNA replicative intermediates. A major cruciform structure in the purified recombinant plasmid has been identified and mapped using, as probes, the enzymes AflII, nuclease S1 and bacteriophage T7 endonuclease I. It was extruded from the central axis of the cloned viral inverted repeat and, by unrestricted branch migration, attained a size commensurate with the superhelical density of the plasmid molecule at native superhelical densities. This major cruciform extrusion event was the only detectable duplex DNA perturbation, induced by negative superhelical torsion, in the insert viral sequences. No significant steady-state pool of extruded cruciform was identified in E. coli. However, the identification of a major deletion variant generated even in the recombination-deficient E. coli strain DB1256 (recA recBC sbcB) suggested that the cruciform may be extruded transiently in vivo. The lineform to cruciform transition has been further characterized in vitro using two-dimensional agarose gel electrophoresis. The transition was marked by a high energy of formation (delta Gf = 44 kcal/mol), and an apparently low activation energy that enabled facile transitions at physiological temperatures provided there was sufficient torsional energy. By comparing cruciformation in a series of related bidirectional central axis deletions of the telomeric insert, it has been concluded that the presence of extrahelical bases in the terminal hairpin structures contributes substantially to the high delta Gf value. Also, viral sequences flanking the extruded cruciform were shown to influence the measured delta Gf value. Several general features of poxvirus telomere structure that would be expected to influence the facility of cruciform extrusion are discussed along with the implications of the observed cruciform transition event on the replicative process of poxviruses in vivo.  相似文献   

5.
Energetics of DNA twisting. II. Topoisomer analysis   总被引:28,自引:0,他引:28  
A gel electrophoresis method has been developed for resolving small (approximately equal to 250 bp DNA topoisomers. In this size range only one major topoisomer band is observed, except for ligase closure conditions in which the probabilities are nearly equal for circularization by untwisting and overtwisting the corresponding linear DNA. The two probabilities are nearly equal when delta Tw is close to 0.5, if the mean helical twist of the linear DNA is n + delta Tw, where n is an integer and delta Tw is the fractional twist. We determine delta Tw of the linear DNA in standard conditions (20 degrees C, no ethidium) by titration experiments in which delta Tw is varied at the time of ligase closure, either by changing temperature or ethidium concentration. The endpoint (delta Tw = 0.5) is found when the two topoisomers formed by untwisting and overtwisting are present at equal concentrations. This analysis assumes that the net writhe is zero and the DNA helix is isotropically bendable. The results confirm the analysis of cyclization probabilities given in the preceding paper: delta Tw = 0 at the two maxima in the curve of j-factor versus DNA length and delta Tw = 0.5 at the minimum. Consequently, we can determine the DNA lengths at which Tw takes on integral values and use them to measure precisely the average helix repeat. From the difference between the delta Tw values of DNAs with 237 and 247 bp, we obtain an approximate value for the helix repeat of h = 10.4 +/- 0.1 bp/turn, in good agreement with earlier values found by the band-shift and nuclease-cutting methods. The twist is integral at 250.8 +/- 0.4 bp and from h = 10.4 +/- 0.1 we find n = 24; then 250.8/24 gives h = 10.45 +/- 0.02 bp/turn. The mean linking number (Lk) changes in a stepwise manner as delta Tw is varied for 250 bp DNAs. This result is expected when the free energy of twisting half a turn becomes large compared to thermal fluctuations. In these experiments, it is possible to obtain the mean Tw value from the mean Lk value only when delta Tw = 0.5, and consequently the mean Lk value is not simply related to DNA length for 250 bp DNAs except when delta Tw = 0.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
It is unclear whether the thermal denaturation of staphylococcal nuclease is a two state, three state, or variable two state process. The thermal denaturation of wild-type staphylococcal nuclease was followed by tryptophan fluorescence and circular dichroism signal at 222 nm, forty-two and fourteen times, respectively. Analysis of this data using a simple two state model gave melting temperatures of 53.0+/-0.4 degrees C (fluorescence) and 52.7+/-0.6 degrees C (CD) and van't Hoff enthalpies of 82.4+/-2.6 kcal/mol and 88.6+/-4.2 kcal/mol. Ninety-seven mutants also had these parameters determined by both fluorescence and CD. The average difference between the melting temperatures was 1.05+/-0.75 degrees and the average difference between van't Hoff enthalpies was 1.6+/-4.8 kcal/mol. These very similar results for the two spectroscopic probes of structure are discussed in the context of the different models that have been proposed for nuclease denaturation. It is concluded, for most nuclease variants, that the errors introduced by a two state assumption are negligible and either virtually all helical structure is lost in any initial unfolding event or any intermediate must have low stability.  相似文献   

7.
NMR study of the alkaline isomerization of ferricytochrome c   总被引:1,自引:0,他引:1  
X L Hong  D W Dixon 《FEBS letters》1989,246(1-2):105-108
The pH-induced isomerization of horse heart cytochrome c has been studied by 1H NMR. We find that the transition occurring in D2O with a pKa measured as 9.5 +/- 0.1 is from the native species to a mixture of two basic forms which have very similar NMR spectra. The heme methyl peaks of these two forms have been assigned by 2D exchange NMR. The forward rate constant (native to alkaline cytochrome c) has a value of 4.0 +/- 0.6 s-1 at 27 degrees C and is independent of pH; the reverse rate constant is pH-dependent. The activation parameters are delta H not equal to = 12.8 +/- 0.8 kcal.mol1, delta S not equal to = -12.9 +/- 2.0 e.u. for the forward reaction and delta H not equal to = 6.0 +/- 0.3 kcal.mol-1, delta S not equal to = -35.1 +/- 1.3 e.u. for the reverse reaction (pH* = 9.28). delta H degree and delta S degree for the isomerization are 6.7 +/- 0.6 kcal.mol-1 and 21.9 +/- 1.0 e.u., respectively.  相似文献   

8.
The preparation and spectroscopic characterization of duplex decamers containing site-specific cis-syn and trans-syn thymine dimers are described. Three duplex decamers, d(CGTATTATGC).d(GCATAATACG), d(CGTAT[c,s]TATGC).d(GCATAATACG), and d(CGTAT[t,s]TATGC).d(GCATAATACG), were prepared by solid-phase phosphoramidite synthesis utilizing cis-syn and trans-syn cyclobutane thymine dimer building blocks (Taylor et al., 1987; Taylor & Brockie, 1988). NMR spectra (500 MHz 2D 1H and 202 MHz 1D 31P) were obtained in "100%" D2O at 10 degrees C, and 1D exchangeable 1H spectra were obtained in 10% D2O at 10 degrees C. 1H NMR assignments for H5, H6, H8, CH3, H1', H2', and H2" were made on the basis of standard sequential NOE assignment strategies and verified in part by DQF COSY data. Comparison of the chemical shift data suggests that the helix structure is perturbed more to the 3'-side of the cis-syn dimer and more to the 5'-side of the trans-syn dimer. Thermodynamic parameters for the helix in equilibrium coil equilibrium were obtained by two-state, all or none, analysis of the melting behavior of the duplexes. Analysis of the temperature dependence of the T5CH3 1H NMR signal gave delta H = 44 +/- 4 kcal and delta S = 132 +/- 13 eu for the trans-syn duplex. Analysis of the concentration and temperature dependence of UV spectra gave delta H = 64 +/- 6 kcal and delta S = 178 +/- 18 eu for the parent duplex and delta H = 66 +/- 7 kcal and delta S = 189 +/- 19 eu for cis-syn duplex. It was concluded that photodimerization of the dTpdT unit to give the cis-syn product causes little perturbation of the DNA whereas dimerization to give the trans-syn product causes much greater perturbation, possibly in the form of a kink or dislocation at the 5'-side of the dimer.  相似文献   

9.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

10.
The energetics associated with the photoequilibrium (Formula: see text) are measured at 77 K by using pulsed-laser photocalorimetry and a range of excitation wavelengths and relative starting concentrations. Enthalpies for the photochemical transformations R hv----B and I hv----B are measured to be delta HRB = 32.2 +/- 0.9 kcal mol-1 and delta HIB = 27.1 +/- 3.2 kcal mol-1, respectively. Although the value of delta HRB is slightly lower than that reported previously by Cooper of 34.7 +/- 2.2 kcal mol-1 [Cooper, A. (1979) Nature (London) 282, 531-533], the two values are in agreement within experimental error. The energy difference delta HRB - delta HIB = 5.1 +/- 3.3 kcal mol-1 is identical within experimental error with the difference in enthalpies of isorhodopsin and rhodopsin [5.2 +/- 2.3; Cooper, A. (1979) FEBS Lett. 100, 382-384]. We suggest that this result is consistent with the theory that bathorhodopsin is a single, common photochemical intermediate connecting rhodopsin and isorhodopsin.  相似文献   

11.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

12.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

13.
The selfassociation of N6,N9-dimethyladenine and N6-dimethyl-N9-ethyladenine has been studied by means of NMR technique. The thermodynamic quantities have been calculated using an isodesmic NMR model with three NMR parameters (the monomer shift deltaM and two complex shifts delta2 and delta3). The dependence of the thermodynamic quantities on the NMR parameters is discussed. Special attention is given to the determination of deltaM and its temperature dependence. Calculations with delta3 = 2 - delta2 and deltaM taken independently of temperature result in an average entropy deltaS = - 17.9 +/- 1.8 e.u. for N6,N9-dimethyladenine and deltaS = - 16.7 +/- 1.7 e.u. for N6-dimethyl-N9-ethyladenine and in an average enthalpy deltaH = - 7.2 +/- 0.6 kcal - mol-1 for both substances investigated.  相似文献   

14.
Functional group interactions involved in the formation of the glutamate dehydrogenase-NADPH binary complex have been studied by three independent but complementary approaches: the pH dependence of the overall dissociation constant measured by an improved differential spectroscopic technique; the pH dependence of the enthalpy of complex formation measured by flow calorimetry; and the pH dependence of the number of protons released to, or taken up from, the solvent in the complex formation reaction, measured by titration. We conclude that the coenzyme binds to the enzyme through three distinguishable interactions: a pH-independent process involving the binding of the reduced nicotinamide ring; a relatively weak "proton-stabilizing" process, occurring at low pH involving the shift at a pK of 6.3 in the free enzyme to 7.0 in the enzyme-NADPH complex; and a stronger "proton-destabilizing" process, occurring at a higher pH involving a shift of a pK of 8.5 in the enzyme down to 6.9 in the enzyme-NADPH complex. The proton ionization of the free enzyme involved in this third interaction exhibits some unusual thermodynamic parameters, having delta Go = +11.5 +/- 0.1 kcal mol-1, delta Ho = +19 +/- 1 kcal mol-1, and delta So = +23 eu. We show here that this proton ionization step is directly related to and indeed constitutes the "implicit" shift in enzyme macrostates which we have shown to be responsible for the existence of large highly nonlinear delta Cpo effects in the formation of this complex [Fisher, H. F., Colen, A. H., & Medary, R. T. (1981) Nature (London) 292, 271-272].  相似文献   

15.
The unfolding of ribonuclease A by urea, guanidine hydrochloride, lithium perchlorate, lithium chloride, and lithium bromide has been followed by circular dichroic and difference spectral measurements. All three abnormal tyrosyl residues are normalized in urea and guanidine hydrochloride (delta epsilon 287 = -2700), only two are normalized in lithium bromide and lithium perchlorate (delta epsilon 287 = -1700), and only one is exposed in lithium chloride solutions (delta epsilon 287 = -700). The Gibbs energies are 4.7 +/- 0.1 kcal mol-1 for urea- and guanidine hydrochloride-denaturation, 3.8 +/- 0.2 kcal mol-1 for lithium perchlorate-denaturation, and 12.7 +/- 0.2 kcal mol-1 for lithium chloride- and lithium bromide-denaturation of ribonuclease A. The latter results suggest that the mechanism of the unfolding process in urea and guanidine hydrochloride is quite different from that in lithium salts.  相似文献   

16.
This is a study of the kinetics of formation of a cruciform structure from the longest palindromic sequence in plasmid pAO3 DNA. DNA was prepared so as to be free of cruciforms even in topoisomers whose negative superhelicity was great enough to induce cruciform formation. Samples of such DNA were incubated at various temperatures, the incubation time varying over a wide range. Then the state was frozen by chilling. Two-dimensional electrophoretic analysis made it possible to estimate the fraction of molecules that got the cruciform structure during incubation. Precautions were taken for electrophoresis conditions to rule out any spontaneous conformational changes within the palindromic region. The relaxation time at the midpoint of the transition ranged from 30 min at 30 C to 50 hrs at 20 C, both in 0.1SSC. An increase in the negative superhelical density by 0.01 led to a 500-fold reduction of the relaxation time at 30 C but had little effect at 20 C. The probability of cruciform formation has been examined as a function of temperature. It has been shown that the cruciform state is no longer the predominant one at elevated temperatures: the cruciformation probability drops to an insignificant value for all of the topoisomers involved. Data have been obtained suggesting that the cruciform formation at the major palindromic site is not the only structural transition possible in pAO3 DNA.  相似文献   

17.
Abstract

This is a study of the kinetics of formation of a cruciform structure from the longest palindromic sequence in plasmid pA03 DNA. DNA was prepared so as to be free of cruciforms even in topoisomers whose negative superhelicity was great enough to induce cruciform formation. Samples of such DNA were incubated at various temperatures, the incubation time varying over a wide range. Then the state was frozen by chilling. Two-dimensional electrophoretic analysis made it possible to estimate the fraction of molecules that got the cruciform structure during incubation. Precautions were taken for electrophoresis conditions to rule out any spontaneous conformational changes within the palindromic region. The relaxation time at the midpoint of the transition ranged from 30 min at 30 C to 50 hrs at 20 C, both in 0.1SSC. An increase in the negative superhelical density by 0.01 led to a 500-fold reduction of the relaxation time at 30 C but had little effect at 20 C. The probability of cruciform formation has been examined as a function of temperature. It has been shown that the cruciform state is no longer the predominant one at elevated temperatures: the cruciformation probability drops to an insignificant value for all of the topoisomers involved. Data have been obtained suggesting that the cruciform formation at the major palindromic site is not the only structural transition possible in pA03 DNA.  相似文献   

18.
A family of plasmids which contain d(AT)n cruciforms are sensitive to "single strand specific" (SS) endonucleases and a variety of chemical probes in a "random sequence" region centered 10-30 residues away from the cruciform junction. The SS nuclease sensitive structures are dependent on the presence of the extruded cruciform and exhibit a degree of sequence independence. Their appearance depends upon the combined effects of slightly lower than neutral pH and superhelical coiling above the minimum required to drive the extrusion of the d(AT)n cruciform arms. The nuclease sensitive structure is therefore underwound with respect to the B conformation and contains protonated bases.  相似文献   

19.
The energetics of D-lactate-driven active transport of lactose in right-side-out Escherichia coli membrane vesicles has been investigated with a microcalorimetric method. Changes of enthalpy (delta Hox), free energy (delta Gox), and entropy (delta Sox) during the D-lactate oxidation reaction in the presence of membrane vesicles are -39.9 kcal, -46.4 kcal, and 22 cal/deg per mole of D-lactate, respectively. The free energy released by this reaction is utilized to form a proton electrochemical potential (delta-microH+) across the membrane. The higher observed heat in the D-lactate oxidation reaction in the presence of carbonylcyanide m-chlorophenylhydrazone (a proton ionophore) supports the postulate that delta-microH+ is formed across the membrane vesicles. Thermodynamic quantities for the formation of delta-microH+ are delta Hm = 14.1 kcal, delta Gm = 0.6 kcal, and delta Sm = 45 cal/deg per mole of D-lactate. The efficiency in the free energy transfer from the oxidation reaction to the formation of delta-microH+ (defined by delta Gm/delta Gox) was 2%, as compared to that in the heat transfer (defined by delta Hm/delta Hox) of 35%. The energetics of the movement of lactose in symport with proton across the membrane as a consequence of the formation of delta-microH+ are delta H1 = -19 kcal, delta G1 = -0.5 kcal, and delta S1 = -62 cal/deg per mole of lactose. No heat of reaction is contributed by lactose movement across the membrane without symport with H+.  相似文献   

20.
A Podgórski  D Elbaum 《Biochemistry》1985,24(27):7871-7876
Interactions between human red cell's band 4.1 and spectrin were studied by fluorescence resonance energy transfer and batch microcalorimetry techniques. The association constant (Ka = 8.6 X 10(7) M-1), the stoichiometry (one molecule of band 4.1 to one molecule of spectrin), the reversibility, and the enthalpy (delta H = -6 kcal/mol) were determined. A proton uptake was observed to take place as a result of the spectrin-band 4.1 complex formation. In addition to the protonation of the reaction products, the entropic contribution (-T delta S) has been observed to be responsible for approximately 50% of the binding free energy. We concluded that the environment plays a significant role in the stabilization of the complex. Since band 4.1 has been required for the maintenance of the cytoskeletal stability, small alterations of the binding energies or the degree of interaction could have a pronounced effect on the structure of the erythrocyte membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号