首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism(s) responsible for beta2-adrenergic receptor-mediated skeletal muscle and cardiac hypertrophy remains undefined. This study examined whether calcium influx through L-type calcium channels contributed to the development of cardiac and skeletal muscle (plantaris; gastrocnemius; soleus) hypertrophy during an 8-day treatment with the beta2-adrenergic receptor agonist clenbuterol. Concurrent blockade of L-type calcium channels with nifedipine did not reverse the hypertrophic action of clenbuterol. Moreover, nifedipine treatment alone resulted in both cardiac and soleus muscle hypertrophy (6% and 7%, respectively), and this effect was additive to the clenbuterol-mediated hypertrophy in the heart and soleus muscles. The hypertrophic effects of nifedipine were not associated with increases in total beta-adrenergic receptor density, nor did nifedipine reverse clenbuterol-mediated beta-adrenergic receptor downregulation in either the left ventricle or soleus muscle. Both nifedipine and clenbuterol-induced hypertrophy increased total protein content of the soleus and left ventricle, with no change in protein concentration. In conclusion, our results support the hypothesis that beta2-adrenergic receptor agonist-induced muscle hypertrophy is mediated by mechanisms other than calcium influx through L-type calcium channels.  相似文献   

2.
T Kahan  C Dahl?f  P Hjemdahl 《Life sciences》1987,40(18):1811-1818
The influence of isoprenaline and adrenaline on the overflow of endogenous noradrenaline evoked by sympathetic nerve stimulation was studied in canine blood perfused gracilis muscle in situ. Neuronal uptake was inhibited by desipramine. Local i.a. infusions of isoprenaline enhanced stimulation evoked noradrenaline overflow by 32 +/- 10% (P less than 0.05), indicating the existence of prejunctional facilitatory beta-adrenoceptors. This effect of isoprenaline was not antagonized by beta 1-adrenoceptor blockade and does not seem to be related to the vasodilatation caused by isoprenaline. In a second series of experiments circulating adrenaline levels were raised by i.v. infusions from basal levels of 0.4 +/- 0.2 nM to 1.7 +/- 0.2 and 6.3 +/- 0.6 nM, respectively, in arterial plasma. Adrenaline elicited vasodilatation in the gracilis muscle (19 +/- 3 and 28 +/- 5% increases in vascular conductance, respectively), indicating activation of postjunctional beta 2-adrenoceptors, without influencing nerve stimulation evoked noradrenaline overflow. Thus, our results support the existence of a prejunctional beta 2-adrenoceptor mediated mechanism facilitating noradrenaline release in vivo, but provide no evidence to support the idea that physiologically relevant increases in circulating adrenaline levels enhance noradrenergic neurotransmission in skeletal muscle.  相似文献   

3.
The venoms of Latrodectus sp. have been reported to induce contraction probably mediated by adrenergic and cholinergic transmitters. We have demonstrated that the venom of Chilean Latrodectus mactans contains neurotoxins that induce a contraction partially independent of transmitters release. Transmembrane mobility of Na+ and Ca2+ ions and more specifically, the increase of cytoplasmic calcium concentration are responsible for tonic contraction in smooth muscle. Calcium may enter the cell by several ways, such as the voltage-dependent Ca2+ L-type channels and the Na+/Ca2+ exchanger. This study aimed to examine the participation of this exchanger in the tonic contraction of smooth muscle in vas deferent of rat induced by the venom of the Chilean spider L. mactans. Blockers of Na+ channels (amiloride) and Ca2+ L-type channels (nifedipine), and a stimulator of the exchanger (modified Tyrode, Na+ 80 mM) were used. Simultaneously, variations of the cytoplasmic concentration of Ca2+ were registered by microfluorimetry (Fura-2 indicator) in the presence of nifedipine. In presence of amiloride, dose-dependent inhibition of venom-induced contraction was observed, suggesting the participation of voltage-dependent Ca2+ L-type channels. The contraction was only partially inhibited by nifedipine and the Ca2+ cytoplasmic concentration increased, as assessed by the microfluorimetric registration. Finally, the venom-induced contraction increased in the presence of modified Tyrode, probably due to the action of the Na+/Ca2+ exchanger. Taken together, our results support the idea that the Na+/Ca2+ exchanger is active and may be, at least in part, responsible for the contraction induced by the venom of Chilean L. mactans.  相似文献   

4.
This study characterized the activation of the regulatory activity of the Na+/H+ antiporter during fertilization of hamster embryos. Hamster oocytes appeared to lack any mechanism for the regulation of intracellular pH in the acid range. Similarly, no Na+/H+ antiporter activity could be detected in embryos that were collected from the reproductive tract between 1 and 5 h post-egg activation (PEA). Activity of the Na+/H+ antiporter was first detected in embryos collected at 5.5 h PEA and gradually increased to reach maximal activity in embryos collected at 7 h PEA. Parthenogenetically activated one-cell and two-cell embryos demonstrate Na+/H+ antiporter activity, indicating that antiporter activity is maternally derived and initiated by activation of the egg. The inability of cycloheximide, colchicine, or cytochalasin D to affect initiation of antiporter activity indicates that antiporter appearance is not dependent on the synthesis of new protein or recruitment of existing protein to the cell membrane. In contrast, incubation of one-cell embryos with sphingosine did inhibit the appearance of Na+/H+ antiporter activity, showing that inhibition of normal protein kinase C activity is detrimental to antiporter function. Furthermore, incubation of oocytes with a phorbol ester which stimulates protein kinase C activity induced Na+/H+ antiporter activity in oocytes in which the activity was previously absent. Incubation with an intracellular calcium chelator also reduced the appearance of antiporter activity. Taken together, these data indicate that the appearance of Na+/H+ antiporter activity following egg activation may be due, at least in part, to regulation by protein kinase C and intracellular calcium levels.  相似文献   

5.
6.
The Ca2+ currents, charge movements, and intracellular Ca2+ transients in mouse skeletal muscle cells homozygous for a null mutation in the cchb1 gene encoding the beta 1 subunit of the dihydropyridine receptor have been characterized. I beta null, the L-type Ca2+ current of mutant cells, had a approximately 13-fold lower density than the L-type current of normal cells (0.41 +/- 0.042 pA/pF at + 20 mV, compared with 5.2 +/- 0.38 pA/pF in normal cells). I beta null was sensitive to dihydropyridines and had faster kinetics of activation and slower kinetics of inactivation than the L-type current of normal cells. Charge movement was reduced approximately 2.8-fold, with Qmax = 6.9 +/- 0.61 and Qmax = 2.5 +/- 0.2 nC/microF in normal and mutant cells, respectively. Approximately 40% of Qmax was nifedipine sensitive in both groups. In contrast to normal cells, Ca2+ transients could not be detected in mutant cells at any test potential; however, caffeine induced a robust Ca2+ transient. In homogenates of mutant muscle, the maximum density of [3H]PN200-110 binding sites (Bmax) was reduced approximately 3.9-fold. The results suggest that the excitation-contraction uncoupling of beta 1-null skeletal muscle involves a failure of the transduction mechanism that is due to either a reduced amount of alpha 1S subunits in the membrane or the specific absence of beta 1 from the voltage-sensor complex.  相似文献   

7.
A mutant of Escherichia coli with defective Na+/H+ antiporter was isolated. The rationale for its isolation was that cells possessing defective Na+/H+ antiporter, which is essential for establishment of a Na+ gradient, could not grow with a carbon source that was taken up with Na+. The mutant had no appreciable Na+/H+ antiporter activity, but its K+/H+ antiporter and Ca2+/H+ antiporter activities were normal. Judging from the reversion frequency, the defect seems to be due to a single mutation. The mutant could not grow at alkaline pH. Therefore, the Na+/H+ antiporter, but not the K+/H+ antiporter or the Ca2+/H+ antiporter, seems to be responsible for pH regulation in alkaline medium. This mutant will be useful for cloning the Na+/H+ antiporter gene and for detection of Na+-substrate cotransport systems.  相似文献   

8.
Phorbol-12,13-dibutyrate, epidermal growth factor, and insulin raised the intracellular pH ([pH]i), presumably through the activation of a Na+/H+ antiporter. Addition of amiloride or replacement of extra-cellular Na+ by choline which abolishes the cytoplasmic alkalinization prevented the stimulation of hexose transport by these agents. Furthermore, monensin, a Na+/H+ ionophore which increases the [pH]i, stimulated hexose transport. This stimulation was also prevented by the replacement of extra-cellular Na+ by choline. These observations suggest that stimulation of the Na+/H+ antiporter may have stimulated the increase in hexose transport.  相似文献   

9.
10.
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation.  相似文献   

11.
Influence of chronic treatment of rats with and calcium channel blockers (CCBs) and isoprenaline (ISP) on responses to noradrenaline (NA) was investigated on electrically--driven isolated right ventricle preparations. The ventricles were obtained from animals treated with chronic ISP or CCBs alone and chronic nifedipine, verapamil, diltiazem or nimodipine plus chronic ISP. A decreased response to NA as evidenced by an increase in EC50 for contraction which was observed in chronic ISP- treated preparations may be due to development of desensitisation (down-regulation) of beta-adrenoceptors. In chronic CCB-treated preparations there was a significant decrease in the EC50 of NA and decreased contractile response suggesting an increase in the beta-adrenoceptors and decreased availability of calcium, respectively. In chronic CCBs + ISP treated preparations further decreases in the EC50 values were observed suggesting that the voltage gated L-type Ca2+ channels may be affected directly or indirectly by change in beta-adrenoceptor activity. By the above results a proposed mechanism of interrelationship of beta-adrenoceptors with voltage gated L-type calcium channels in cardiac muscle is supported.  相似文献   

12.
Evidence is presented suggesting that the Na+/H+ antiporter activity of aortic smooth muscle cells is stimulated by protein kinase C activation. However, once the transporter has been activated, inhibitors of protein kinase C are not effective, supporting a model in which the Na+/H+ antiporter conserves memory of its activation by protein kinase C.  相似文献   

13.
In our routine screening of chemicals that would inhibit cardiac sarcolemmal Na+/H+ antiporter, we discovered that some of the opioids produced inhibition of cardiac sarcolemmal Na+/H+ antiporter in micromolar concentrations. Using U-50,488H, a selective kappa-opioid agonist, we characterized the nature of interaction between opioids and the Na+/H+ antiporter. The inhibitory effect of U-50,488H on Na+/H+ antiporter was immediate and reversible, and was not mediated through the interaction with the opioid receptors but due to the direct interaction of U-50,488H with the Na+/H+ antiporter. The kinetic data show that in the presence of U-50,488H the Km for Na+ was increased from 2.5 +/- 0.2 to 5.0 +/- 0.3 mM, while the Vmax (52.0 +/- 5.0 nmol.mg-1.min-1) remained the same. These results suggest that U-50,488H and Na+ compete for the same site on the antiporter. When testing the effect of U-50,488H on other transport systems of cardiac sarcolemma, we found that U-50,488H also inhibited Na+/Ca2+ antiporter and Na+/K+ pump but at much higher concentrations suggesting that U-50,488H shows some degree of selectivity for cardiac sarcolemmal Na+/H+ antiporter. When we compared the inhibitory potency of U-50,488H with amiloride and its analog, namely 5-(N,N-hexamethylene)amiloride, we found that U-50,488H (IC50 = 100 +/- 15 microM) was threefold more potent than amiloride (IC50 = 300 +/- 20 microM) but it was three-fold less potent than the amiloride analog (IC50 = 30 +/- 10 microM) in inhibiting cardiac sarcolemmal Na+/H+ antiporter. These results show that although U-50,488H is more potent than amiloride, the inhibitory characteristics of U-50,488H on cardiac sarcolemmal Na+/H+ antiporter are similar to amiloride.  相似文献   

14.
The Na+/H+ antiporter is a ubiquitous transmembrane protein that plays a vital role in cell growth via regulation of intracellular Na+ and H+. In vascular smooth muscle cells (VSMC), vasoconstrictors and mitogens rapidly activate the antiporter, suggesting that both should have growth promoting effects. Indeed, angiotensin II increases VSMC protein and volume (hypertrophy), but does not increase cell number (hyperplasia). In the present work we investigated whether alterations in the steady state levels of Na+/H+ antiporter mRNA might differentiate these VSMC growth responses. Differences in function of the Na+/H+ antiporter appeared likely because exposure of growth-arrested VSMC for 24 h to 100 nM angiotensin II decreased intracellular pH from 7.08 to 6.99, while exposure to 10% calf serum caused an increase to 7.18. Simultaneous measurement of Na+/H+ antiporter mRNA levels, using the human c28 cDNA, revealed a 25-fold increase in response to serum (as well as to platelet-derived and fibroblast growth factors), but no change in response to angiotensin II. All agonists increased mRNA levels of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase approximately 3-fold. The increase in Na+/H+ antiporter mRNA induced by serum was first apparent within 2 h and peaked 24 h after treatment. These results demonstrate that expression of Na+/H+ antiporter mRNA in VSMC is dependent on growth state: hyperplastic agonists (serum, platelet-derived and fibroblast growth factor) increase the steady state levels of Na+/H+ antiporter mRNA while a hypertrophic agonist (angiotensin II) does not.  相似文献   

15.
Using in vivo assays, we show that the Na+/H+ antiporter activity of the Escherichia coli mutant HIT-1 is reduced dramatically compared with activity in wild-type cells. An isogenic nhaA (formerly antA) deletion strain, however, is not significantly different from wild type in this respect. We call the locus affecting Na+/H+ antiporter activity of the HIT-1 mutant nhaB. The nhaB activity exhibits no pH dependence in the range between 7.0 and 8.5, whereas that of the nhaA gene increases considerably at pH levels above 8.0. Mutants with defects in nhaB grow normally on agar media containing 0.5 M NaCl, but nhaA mutants are sensitive to 0.5 M NaCl. We have mapped the nhaB mutation of HIT-1 to 25.6 min on the E. coli map. It is unlinked to the nhaA region, which is located at about 0.5 min. Since a cell with a mutation in nhaB alone is essentially Na+/H+ antiporter negative up to pH 8.0, we conclude that nhaB is required for the major Na+/H+ antiporter activity in the usual physiological pH range.  相似文献   

16.
Addition of polypeptide growth factors to cultured cells results in a rapid stimulation of Na+/H+ exchange, which leads to cytoplasmic alkalinization. We studied the effects of the potent tumor promoter phorbol 12-myristate 13-acetate (PMA) on the Na+/H+ exchange system of A431 cells. Stimulation of Na+/H+ exchange by epidermal growth factor (EGF) and serum as well as by vanadate ions is strongly inhibited after treatment of cells with nanomolar concentrations of PMA. Phorbol esters that have no activity as tumor promoters also do not modulate the activation of Na+/H+ exchange. By contrast, the stimulation of Na+/H+ exchange that is produced upon exposure of cells to hypertonic solution is only slightly inhibited by PMA treatment, indicating that PMA treatment does not directly block the activity of the Na+/H+ antiporter. Furthermore, incubation of cells with PMA causes a weak stimulation of Na+/H+ exchange, although this effect is mostly observed at relatively high PMA concentrations and appears to require external Ca2+. The inhibition BY PMA of EGF-promoted Na+/H+ exchange is not due to inhibition of EGF-binding to the EGF receptor. Since PMA activates protein kinase C, our observations are consistent with the hypothesis that protein kinase C functions to attenuate the stimulation of Na+/H+ exchange by polypeptide growth factors.  相似文献   

17.
Na+/H+ antiport was studied in alkaliphilic Bacillus sp. strain C-125, its alkali-sensitive mutant 38154, and a transformant (pALK2) with recovered alkaliphily. The transformed was able to maintain an intracellular pH (pHin) that was lower than that of external milieu and contained an electrogenic Na+/H+ antiporter driven only by delta psi (membrane potential, interior negative). The activity of this delta psi-dependent Na+/H+ antiporter was highly dependent on pHin, increasing with increasing pHin, and was found only in cells grown at alkaline pH. On the other hand, the alkali-sensitive mutant, which had lost the ability to grow above pH 9.5, lacked the delta psi-dependent Na+/H+ antiporter and showed defective regulation of pHin at the alkaline pH range. However, this mutant, like the parent strain, still required sodium ions for growth and for an amino acid transport system. Moreover, another Na+/H+ antiporter, driven by the imposed delta pH (pHin > extracellular pHout), was active in this mutant strain, showing that the previously reported delta pH-dependent antiport activity is probably separate from delta psi-dependent antiporter activity. The delta pH-dependent Na+/H+ antiporter was found in cells grown at either pH 7 or pH 9. This latter antiporter was reconstituted into liposomes by using a dilution method. When a transmembrane pH gradient was applied, downhill sodium efflux was accelerated, showing that the antiporter can be reconstituted into liposomes and still retain its activity.  相似文献   

18.
Changes in intracellular calcium regulate countless biological processes. In arterial smooth muscle, voltage-dependent L-type calcium channels are major conduits for calcium entry with the primary function being determination of arterial diameter. Similarly, changes in intracellular redox status, either discrete controlled changes or global pathological perturbations, are also critical determinants of cell function. We recently reported that in arterial smooth muscle cells, local generation of hydrogen peroxide leads to colocalized calcium entry through L-type calcium channels. Here we extend our investigation into mechanisms linking hydrogen peroxide to calcium influx through L-type calcium channels by focusing on the role of protein kinase C (PKC). Our data indicate that stimulation of L-type calcium channels by hydrogen peroxide requires oxidant-dependent increases in PKC catalytic activity. This effect is independent of classical cofactor-dependent activation of PKC by diacylglycerol. These data provide additional experimental evidence supporting the concept of oxidative stimulation of L-type calcium channels.  相似文献   

19.
Changes in intracellular calcium regulate countless biological processes. In arterial smooth muscle, voltage-dependent L-type calcium channels are major conduits for calcium entry with the primary function being determination of arterial diameter. Similarly, changes in intracellular redox status, either discrete controlled changes or global pathological perturbations, are also critical determinants of cell function. We recently reported that in arterial smooth muscle cells, local generation of hydrogen peroxide leads to colocalized calcium entry through L-type calcium channels. Here we extend our investigation into mechanisms linking hydrogen peroxide to calcium influx through L-type calcium channels by focusing on the role of protein kinase C (PKC). Our data indicate that stimulation of L-type calcium channels by hydrogen peroxide requires oxidant-dependent increases in PKC catalytic activity. This effect is independent of classical cofactor-dependent activation of PKC by diacylglycerol. These data provide additional experimental evidence supporting the concept of oxidative stimulation of L-type calcium channels.  相似文献   

20.
Unlike glucose transport, where translocation of the insulin-responsive glucose transporter (GLUT4) from an intracellular compartment to the plasma membrane is the principal mechanism underlying insulin stimulation, no consensus exists presently for the mechanism by which insulin activates the Na+/K(+)-ATPase. We have investigated (i) the subunit isoforms expressed and (ii) the effect of insulin on the subcellular distribution of the alpha beta isoforms of the Na+/K(+)-ATPase in plasma membranes (PM) and internal membranes (IM) from rat skeletal muscle. Western blot analysis, using isoform-specific antibodies to the various subunits of the Na+/K(+)-ATPase, revealed that skeletal muscle PM contains the alpha 1 and alpha 2 catalytic subunits and the beta 1 and beta 2 subunits of the Na+ pump. Skeletal muscle IM were enriched in alpha 2, beta 1, and beta 2; alpha 1 was barely detectable in this fraction. After insulin treatment, alpha 2 content in the PM increased, with a parallel decrease in its abundance in the IM pool; insulin did not have any effect on alpha 1 isoform amount or subcellular distribution. The beta 1 subunit, but not beta 2, was also elevated in the PM after insulin treatment, but this increase originated from a sucrose gradient fraction different from that of the alpha 2 subunit. Our findings suggest that insulin induces an isoform-specific translocation of Na+ pump subunits from different intracellular sources to the PM and that the hormone-responsive enzyme in rat skeletal muscle is an alpha 2:beta 1 dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号