首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
观察甲磺酸甲酯 (MMS)对酿酒酵母S2 88C细胞染色体DNA的损伤及端粒酶活性的调节。结果表明 ,甲磺酸甲酯引起酵母细胞DNA损伤 ,随着MMS浓度的增加及作用时间的延长 ,DNA损伤程度加重 ,同时明显提高酵母细胞端粒酶活性。当用 0 .4mmol/LMMS作用 72h后 ,端粒酶活性最高 (是对照组的1.4 7倍 ) ,在作用 96h及 12 0h后端粒酶活性逐渐下降 ,但均高于对照组。甲磺酸甲酯对酿酒酵母S2 88C细胞端粒酶活性的上调作用可能与其DNA损伤有关 ,断裂DNA的损伤后修复可能是端粒酶介导的。  相似文献   

2.
Induction of telomerase activity by irradiation in human lymphoblasts   总被引:5,自引:0,他引:5  
Neuhof, D., Ruess, A., Wenz, F. and Weber, K. J. Induction of Telomerase Activity by Irradiation in Human Lymphoblasts. Radiat. Res. 155, 693-697 (2001). Telomerase activity is a radiation-inducible function, which suggests a role of this enzyme in DNA damage processing. Since the tumor suppressor TP53 plays a central role in the regulation of the cellular response to DNA damage, our study explored the ability of ionizing radiation to change telomerase activity and telomere length in two closely related human lymphoblast cell lines with different TP53 status. TK6 cells (wild-type TP53) and WTK1 cells (mutated TP53) were exposed to different doses of X rays, and telomerase activity was measured by PCR ELISA at different times after irradiation. A dose-dependent increase in telomerase activity was observed. One hour after irradiation with 4 Gy, TK6 and WTK1 cells showed an approximately 2.5-fold increase; for lower doses (0.1 to 1 Gy), telomerase induction was seen only in TK6 cells. Telomerase induction was observed by 0.5 h after irradiation, with a further increase up to 24 h. Irradiated TK6 and WTK1 cells had longer telomeres (+1.3 kb) than unirradiated cells 14 days after exposure. Our data demonstrate a dose-dependent induction of telomerase activity and lengthening of telomeres by ionizing radiation in human lymphoblasts. Induction of telomerase activity by radiation does not generally appear to be controlled by the TP53-dependent DNA damage response pathway. However, for low doses, induction of telomerase requires wild-type TP53.  相似文献   

3.
4.
Pif1 is a 5'-to-3' DNA helicase critical to DNA replication and telomere length maintenance in the budding yeast Saccharomyces cerevisiae. ScPif1 is a negative regulator of telomeric repeat synthesis by telomerase, and recombinant ScPif1 promotes the dissociation of the telomerase RNA template from telomeric DNA in vitro. In order to dissect the role of mPif1 in mammals, we cloned and disrupted the mPif1 gene. In wild-type animals, mPif1 expression was detected only in embryonic and hematopoietic lineages. mPif1(-/-) mice were viable at expected frequencies, displayed no visible abnormalities, and showed no reproducible alteration in telomere length in two different null backgrounds, even after several generations. Spectral karyotyping of mPif1(-/-) fibroblasts and splenocytes revealed no significant change in chromosomal rearrangements. Furthermore, induction of apoptosis or DNA damage revealed no differences in cell viability compared to what was found for wild-type fibroblasts and splenocytes. Despite a novel association of mPif1 with telomerase, mPif1 did not affect the elongation activity of telomerase in vitro. Thus, in contrast to what occurs with ScPif1, murine telomere homeostasis or genetic stability does not depend on mPif1, perhaps due to fundamental differences in the regulation of telomerase and/or telomere length between mice and yeast or due to genetic redundancy with other DNA helicases.  相似文献   

5.
6.
Effects of meal timing on tumor progression in mice   总被引:2,自引:0,他引:2  
Wu MW  Li XM  Xian LJ  Lévi F 《Life sciences》2004,75(10):1181-1193
Meal timing can reset circadian clocks in peripheral tissues. We investigated the effects of such non-photic entrainment on tumor growth rate. Two experiments involved a total of 61 male B6D2F(1) mice synchronized with an alternation of 12 h of light (L) and 12 h of darkness (D) (LD12:12). Mice were randomly allocated to have access to food ad libitum, or restricted to 4 or 6 h during L or D. Rest-activity and body temperature, two circadian outputs, were monitored with an intra-peritoneal sensor. Glasgow osteosarcoma was inoculated into both flanks of each mouse ten days after meal timing onset. Before tumor inoculation, meal timing during D amplified the 24-h rhythms in rest-activity and body temperature with minimal phase alteration as compared to ad libitum feeding. Conversely, meal timing during L induced dominant 12-h or 8-h rhythmic components in activity, nearly doubled the 24-h amplitude of body temperature and shifted its acrophase (time of maximum) from approximately mid-D to approximately mid-L. Thirteen days after tumor inoculation, mean tumor weight (+/- SEM, mg) was 1503 +/- 150 in ad libitum mice, 1077 +/- 157 in mice fed during D and 577 +/- 139 in mice fed during L (ANOVA, p < 0.0001). Overall survival was prolonged in the mice fed during L (median, 17.5 days, d) as compared with those fed during D (14.5 d) or ad libitum (14 d) (Log Rank, p = 0.0035). The internal desynchronization produced by meal timing during L slowed down tumor progression, an effect possibly resulting from improved host-mediated tumor control and/or altered tumor circadian clocks.  相似文献   

7.
Rb and E2F-1 regulate telomerase activity in human cancer cells   总被引:10,自引:0,他引:10  
  相似文献   

8.
The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo.  相似文献   

9.
Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.  相似文献   

10.

Introduction

Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known.

Methods

In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres.

Results

Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice.

Conclusion

Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation.  相似文献   

11.
Bianchi A  Shore D 《Cell》2007,128(6):1051-1062
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.  相似文献   

12.
Telomerase mutations and significantly shortened chromosomal telomeres have recently been implicated in human lung pathologies. Natural telomere shortening is an inevitable consequence of aging, which is also a risk factor for development of lung disease. However, the impact of shortened telomeres and telomerase dysfunction on the ability of lung cells to respond to significant challenge is still largely unknown. We have previously shown that lungs of late generation, telomerase null B6.Cg-Terc(tm1Rdp) mice feature alveolar simplification and chronic stress signaling at baseline, a phenocopy of aged lung. To determine the role telomerase plays when the lung is challenged, B6.Cg-Terc(tm1Rdp) mice carrying shortened telomeres and wild-type controls were subjected to partial pneumonectomy. We found that telomerase activity was strongly induced in alveolar epithelial type 2 cells (AEC2) of the remaining lung immediately following surgery. Eighty-six percent of wild-type animals survived the procedure and exhibited a burst of early compensatory growth marked by upregulation of proliferation, stress response, and DNA repair pathways in AEC2. In B6.Cg-Terc(tm1Rdp) mice carrying shortened telomeres, response to pneumonectomy was characterized by decreased survival, diminished compensatory lung growth, attenuated distal lung progenitor cell response, persistent DNA damage, and cell growth arrest. Overall, survival correlated strongly with telomere length. We conclude that functional telomerase and properly maintained telomeres play key roles in both long-term survival and the early phase of compensatory lung growth following partial pneumonectomy.  相似文献   

13.
14.
Regulation of catalytic activity and processivity of human telomerase   总被引:13,自引:0,他引:13  
The ends of eukaryotic chromosomes are specialized sequences, called telomeres comprising tandem repeats of simple DNA sequences. Those sequences are essential for preventing aberrant recombination and protecting genomic DNA against exonucleolytic DNA degradation. Telomeres are maintained at a stable length by telomerase, an RNA-dependent DNA polymerase. Recently, human telomerase has been recognized as a unique diagnostic marker for human tumors and is potentially a highly selective target for antitumor drugs. In this study, we have examined the major factors affecting the catalytic activity and processivity of human telomerase. Specifically, both the catalytic activity and processivity of human telomerase were modulated by temperature, substrate (dNTP and primer) concentration, and the concentration of K+. The catalytic activity of telomerase increased as temperature (up to 37 degrees C), concentrations of dGTP, primer, and K+ were increased. However, the processivity of human telomerase decreased as temperature, primer concentration, and K+ were increased. Our results support the current model for human telomerase reaction and strengthen the hypothesis that a G-quadruplex structure of telomere DNA plays an important role in the regulation of the telomerase reaction.  相似文献   

15.
应用TRAP PCR ELISA法检测CpGODNs及E .coliDNA对肿瘤细胞端粒酶活性的影响变化 ,同时用流式细胞仪检测细胞周期的变化及凋亡的产生 ,从基因水平探讨其抗肿瘤机制。实验发现活性形式的CpGODNs可显著降低肿瘤细胞端粒酶活性 ,E .coliDNA的下调作用出现在 48h之后 ,二者均可使G0 /G1期细胞含量增加 ,但均未引起凋亡。结果表明 ,CpGODNs及E .coliDNA在基因水平可通过抑制端粒酶活性达到抗肿瘤目的 ,但不能诱导肿瘤细胞凋亡。  相似文献   

16.
In this study, C57BL/6J mice were exposed to hyperoxia and allowed to recover in room air. The sublethal dose of hyperoxia for C57BL/6J was 48 h. Distal lung cellular isolates from treated animals were characterized as 98% epithelial, with minor fibroblast and endothelial cell contaminants. Cells were then verified as 95% pure alveolar epithelial type II cells (AEC2) by surfactant protein C (SP-C) expression. After hyperoxia exposure in vivo, fresh, uncultured AEC2 were analyzed for proliferation by cell yield, cell cycle, PCNA expression, and telomerase activity. DNA damage was assessed by TdT-dUTP nick-end labeling, whereas induction of DNA repair was evaluated by GADD-153 expression. A baseline level for proliferation and damage was observed in cells from control animals that did not alter significantly during acute hyperoxia exposure. However, a rise in these markers was observed 24 h into recovery. Over 72 h of recovery, markers for proliferation remained elevated, whereas those for DNA damage and repair peaked at 48 h and then returned back to baseline. The expression of GADD-153 followed a distinct course, rising significantly during acute exposure and peaking at 48 h recovery. These data demonstrate that in healthy, adult male C57BL/6J mice, AEC2 proliferation, damage, and repair follow separate courses during hyperoxia recovery and that both proliferation and efficient repair may be required to ensure AEC2 survival.  相似文献   

17.
18.
19.
The pleiotropy of telomerase against cell death   总被引:5,自引:0,他引:5  
  相似文献   

20.
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号