首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.  相似文献   

3.
Peroxidases of the peroxiredoxin (Prx) family catalyze the reduction of H(2)O(2) and lipid peroxides. The effects of H(2)O(2), 12-O-tetradecanoylphorbol 13-acetate (TPA), and silica on the abundance of two cytosolic isoforms of Prx (PrxI and PrxII) were examined in Rat2 cells. TPA induces the production of reactive oxygen species (ROS) in various mammalian cell types, and silica induces the production of ROS in Rat2 cells. Whereas H(2)O(2) and TPA did not affect the concentration of PrxI or Prx II, silica triggered a rapid degradation of both Prx enzymes. Silica also induced degradation of the NF-kappaB inhibitor IkappaB-alpha. N-Acetylcysteine and diphenyleneiodonium, both of which inhibit the accumulation of intracellular ROS, each blocked silica-induced degradation of IkappaB-alpha but had no effect on that of the Prx enzymes, suggesting that ROS do not contribute to Prx proteolysis. The silica-induced degradation of Prx enzymes was also insensitive to the proteasome inhibitors MG132 and lactacystin, whereas IkappaB-alpha proteolysis was completely blocked by these inhibitors. Experiments with the Ca(2+) ionophore A23187 indicated that a Ca(2+)-dependent protease such as calpain might contribute substantially to silica-induced degradation of PrxII, but only moderately to that of PrxI. These results indicate that silica increases cellular oxidative stress not only by inducing ROS production, but also by triggering the degradation of Prx enzymes that are responsible for elimination of cellular ROS. Such aggravated oxidative stress might be important in the initial pathogenesis of silica-associated pulmonary diseases.  相似文献   

4.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   

5.
6.
We reported previously that freshly fractured silica (FFSi) induces activator protein-1 (AP-1) activation through extracellular signal-regulated protein kinases (ERKs) and p38 kinase pathways. In the present study, the biologic activities of FFSi and aged silica (ASi) were compared by measuring their effects on the AP-1 activation and phosphorylation of ERKs and p38 kinase. The roles of reactive oxygen species (ROS) in this silica-induced AP-1 activation were also investigated. We found that FFSi-induced AP-1 activation was four times higher than that of ASi in JB6 cells. FFSi also caused greater phosphorylation of ERKs and p38 kinase than ASi. FFSi generated more ROS than ASi when incubated with the cells as measured by electron spin resonance (ESR). Studies using ROS-sensitive dyes and oxygen consumption support the conclusion that ROS are generated by silica-treated cells. N-Acetylcysteine (an antioxidant) and polyvinyl pyridine-N-oxide (an agent that binds to Si-OH groups on silica surfaces) decreased AP-1 activation and phosphorylation of ERKs and p38 kinase. Catalase inhibited phosphorylation of ERKs and p38 kinase, as well as AP-1 activation induced by FFSi, suggesting the involvement of H(2)O(2) in the mechanism of silica-induced AP-1 activation. Sodium formate (an ( small middle dot)OH scavenger) had no influence on silica-induced MAPKs or AP-1 activation. Superoxide dismutase enhanced both AP-1 and MAPKs activation, indicating that H(2)O(2), but not O(2), may play a critical role in silica-induced AP-1 activation. These studies indicate that freshly ground silica is more biologically active than aged silica and that ROS, in particular H(2)O(2), play a significant role in silica-induced AP-1 activation.  相似文献   

7.
We hypothesized that reactive oxygen species (ROS) may be involved in the pathogenesis of silicosis. To investigate ROS' dependent pathophysiological processes during silicosis we studied the kinetic clearance of instilled stable nitroxide radicals (TEMPO). Antioxidant enzymes' superoxide dismutase (SOD) and glutathione peroxidase (GPx), and lipid peroxidation were also studied in whole lungs of rats exposed to crystalline silica (quartz) and sham exposed controls. Low frequency L-band electron spin resonance spectroscopy was used to measure the clearance of TEMPO in whole-rat lungs directly. The clearance of TEMPO followed first order kinetics showing significant differences in the rate for clearance between the diseased and sham exposed control lungs. Comparison of TEMPO clearance rates in the sham exposed controls and silicotic rats showed an oxidative stress in the rats exposed to quartz. Studies on the antioxidant enzymes SOD and GPx in the lungs of silicotic and sham exposed animals supported the oxidative stress and accelerated clearance of TEMPO by up regulated levels of enzymes in quartz exposed animals. Increased lipid peroxidation potential in the silicotics also supported a role for enhanced generation of ROS in the pathogenesis of silica-induced lung injury. These in vivo experiments directly demonstrate, for the first time, that silicotic lungs are in a state of oxidative stress and that increased generation of ROS is associated with enhanced levels of oxidative enzymes and lipid peroxidation. This technique offers great promise for the elucidation of ROS induced lung injury and development of therapeutic strategies for the prevention of damage.  相似文献   

8.
Reactive oxygen species (ROS)-induced damage on host cells and molecules has been considered the most likely proximal mechanism responsible for the age-related decline in organismal performance. Organisms have two possible ways to reduce the negative effect of ROS: disposing of effective antioxidant defenses and minimizing ROS production. The unbalance between the amount of ROS produced and the availability of antioxidant defenses determines the intensity of so-called oxidative stress. Interestingly, most studies that deal with the effect of oxidative stress on organismal performance have focused on the antioxidant defense compartment and, surprisingly, have neglected the mechanisms that control ROS production within mitochondria. Uncoupling proteins (UCPs), mitochondrial transporters of the inner membrane, are involved in the control of redox state of cells and in the production of mitochondrial ROS. Given their function, UCPs might therefore represent a major mechanistic link between metabolic activity and fitness. We suggest that by exploring the role of expression and function of UCPs both in experimental as well as in comparative studies, evolutionary biologists may gain better insight into this link.  相似文献   

9.
Aerobic cells are subjected to damaging reactive oxygen species (ROS) as a consequence of oxidative metabolism and/or exposure to environmental toxins. Antioxidants limit this damage, yet peroxidative events occur when oxidant stress increases. This arises due to increased radical formation or decreased antioxidative defenses. The two-step enzymatic antioxidant pathway limits damage to important biomolecules by neutralising superoxides to water. However, an imbalance in this pathway (increased first-step antioxidants relative to second-step antioxidants) has been proposed as etiological in numerous pathologies. This review presents evidence that a shift in favor of hydrogen peroxide and/or lipid peroxides has pathophysiological consequences. The involvement of antioxidant genes in the regulation of redox status, and ultimately cellular homeostasis, is explored in murine transgenic and knockout models. The investigations of Sod1 transgenic cell-lines and mice, as well as Gpx1 knockout mice (both models favor H(2)O(2) accumulation), are presented. Although in most instances accumulation of H(2)O(2) affects cellular function and leads to exacerbated pathology, this is not always the case. This review highlights those instances where, for example, increased Sod1 levels are beneficial, and indicates a role for superoxide radicals in pathogenesis. Studies of Gpx1 knockout mice (an important second-step antioxidant) lead us to conclude that Gpx1 functions as the primary protection against acute oxidative stress, particularly in neuropathological situations such as stroke and cold-induced head trauma, where high levels of ROS occur during reperfusion or in response to injury. In summary, these studies clearly highlight the importance of limiting ROS-induced cellular damage by maintaining a balanced enzymatic antioxidant pathway.  相似文献   

10.
Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species (ROS) that are associated with radiation-induced cytotoxicity. Because of the serious damaging potential of ROS, cells depend on the elaboration of the antioxidant defense system (AODS), both enzymatic and nonenzymatic oxidant defense mechanisms. The deficiency in important components of the endogenous AODS leads to the accumulation of oxidative stress inducing oxidative damage. The antioxidant enzymes superoxide dismutase and glutathione peroxidase are key intracellular antioxidants in the metabolism of ROS. In the current study, we investigated the potential role of these antioxidant enzymes in radioresistance during the evaluation of the compensatory role of some exogenous micronutrients against oxidative stress Animals were categorized into eight groups, receiving vitamin E (α-tocopherol) and/or selenium (Se) with or without whole-body γ-irradiation (6.5 Gy). The results indicate that antioxidant pretreatments before irradiation may have some beneficial effects against irradiation-induced injury. The results also indicate that selenium and vitamin E act alone and in an additive fashion as radioprotecting agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown, whereas vitamin E appears to confer its protection by an alternate complementary mechanism.  相似文献   

11.
The role of oxidative stress in diabetic complications   总被引:14,自引:0,他引:14  
The morbidity and mortality associated with diabetes is the result of the myriad complications related to the disease. One of the most explored hypotheses to explain the onset of complications is a hyperglycemia-induced increase in oxidative stress. Reactive oxygen species (ROS) are produced by oxidative phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase (NADPH), xanthine oxidase, the uncoupling of lipoxygenases, cytochrome P450 monooxygenases, and glucose autoxidation. Once formed, ROS deplete antioxidant defenses, rendering the affected cells and tissues more susceptible to oxidative damage. Lipid, DNA, and protein are the cellular targets for oxidation, leading to changes in cellular structure and function. Recent evidence suggests ROS are also important as second messengers in the regulation of intracellular signaling pathways and, ultimately, gene expression. This review explores the production of ROS and the propagation and consequences of oxidative stress in diabetes.  相似文献   

12.
Reactive oxygen species (ROS) are generated as by-products of aerobic respiration and metabolism. Mammalian cells have evolved a variety of enzymatic mechanisms to control ROS production, one of the central elements in signal transduction pathways involved in cell proliferation, differentiation and apoptosis. Antioxidants also ensure defenses against ROS-induced damage to lipids, proteins and DNA. ROS and antioxidants have been implicated in the regulation of reproductive processes in both animal and human, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryogenesis, embryonic implantation, and placental differentiation and growth. In contrast, imbalances between ROS production and antioxidant systems induce oxidative stress that negatively impacts reproductive processes. High levels of ROS during embryonic, fetal and placental development are a feature of pregnancy. Consequently, oxidative stress has emerged as a likely promoter of several pregnancy-related disorders, such as spontaneous abortions, embryopathies, preeclampsia, fetal growth restriction, preterm labor and low birth weight. Nutritional and environmental factors may contribute to such adverse pregnancy outcomes and increase the susceptibility of offspring to disease. This occurs, at least in part, via impairment of the antioxidant defense systems and enhancement of ROS generation which alters cellular signalling and/or damage cellular macromolecules. The links between oxidative stress, the female reproductive system and development of adverse pregnancy outcomes, constitute important issues in human and animal reproductive medicine. This review summarizes the role of ROS in female reproductive processes and the state of knowledge on the association between ROS, oxidative stress, antioxidants and pregnancy outcomes in different mammalian species.  相似文献   

13.
Abstract

Aerobic cells are subjected to damaging reactive oxygen species (ROS) as a consequence of oxidative metabolism and/or exposure to environmental toxins. Antioxidants limit this damage, yet peroxidative events occur when oxidant stress increases. This arises due to increased radical formation or decreased antioxidative defenses. The two-step enzymatic antioxidant pathway limits damage to important biomolecules by neutralising superoxides to water. However, an imbalance in this pathway (increased first-step antioxidants relative to second-step antioxidants) has been proposed as etiological in numerous pathologies. This review presents evidence that a shift in favor of hydrogen peroxide and/or lipid peroxides has pathophysiological consequences. The involvement of antioxidant genes in the regulation of redox status, and ultimately cellular homeostasis, is explored in murine transgenic and knockout models. The investigations of Sod1 transgenic cell-lines and mice, as well as Gpx1 knockout mice (both models favor H2O2 accumulation), are presented. Although in most instances accumulation of H2O2 affects cellular function and leads to exacerbated pathology, this is not always the case. This review highlights those instances where, for example, increased Sod1 levels are beneficial, and indicates a role for superoxide radicals in pathogenesis. Studies of Gpx1 knockout mice (an important second-step antioxidant) lead us to conclude that Gpx1 functions as the primary protection against acute oxidative stress, particularly in neuropathological situations such as stroke and cold-induced head trauma, where high levels of ROS occur during reperfusion or in response to injury. In summary, these studies clearly highlight the importance of limiting ROS-induced cellular damage by maintaining a balanced enzymatic antioxidant pathway.  相似文献   

14.
Reactive oxygen species (ROS) generated by mitochondrial respiration and other processes are often viewed as hazardous substances. Indeed, oxidative stress, defined as an imbalance between oxidant production and antioxidant protection, has been linked to several neurological disorders, including cerebral ischemia-reperfusion and Parkinson's disease. Consequently, cells and organisms have evolved specialized antioxidant defenses to balance ROS production and prevent oxidative damage. Research in our laboratory has shown that neuronal levels of ascorbate, a low molecular weight antioxidant, are ten-fold higher than those in much less metabolically active glial cells. Ascorbate levels are also selectively elevated in the CNS of anoxia-tolerant reptiles compared to mammals; moreover, plasma and CSF ascorbate concentrations increase markedly in cold-adapted turtles and in hibernating squirrels. Levels of the related antioxidant, glutathione, vary much less between neurons and glia or among species. An added dimension to the role of the antioxidant network comes from recent evidence that ROS can act as neuromodulators. One example is modulation of dopamine release by endogenous hydrogen peroxide, which we describe here for several mammalian species. Together, these data indicate adaptations that prevent oxidative stress and suggest a particularly important role for ascorbate. Moreover, they show that the antioxidant network must be balanced precisely to provide functional levels of ROS, as well as neuroprotection.  相似文献   

15.
Ultraviolet B (UVB medium wave, 280–315 nm) induces cellular oxidative damage and apoptosis by producing reactive oxygen species (ROS). Glutathione peroxidase functions as an antioxidant by catalyzing the reduction of hydrogen peroxide, the more important member of reactive oxygen species. A human selenium-containing single-chain variable fragment (se-scFv-B3) with glutathione peroxidase activity of 1288 U/μmol was generated and investigated for its antioxidant effects in UVB-induced oxidative damage model. In particular, cell viability, lipid peroxidation extent, cell apoptosis, the change of mitochondrial membrane potential, caspase-3 activity and the levels of intracellular reactive oxygen species were assayed. Human se-scFv-B3 protects NIH3T3 cells against ultraviolet B-induced oxidative damage and subsequent apoptosis by prevention of lipid peroxidation, inhibition of the collapse of mitochondrial membrane potential as well as the suppression of the caspase-3 activity and the level of intracellular ROS. It seems that antioxidant effects of human se-scFv-B3 are mainly associated with its capability to scavenge reactive oxygen species, which is similar to that of the natural glutathione peroxidase.  相似文献   

16.
17.
Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis.  相似文献   

18.
The excessive production of reactive oxygen species (ROS) associated with inflammation leads to oxidative stress, which is involved with the high mortality from several diseases such as endotoxic shock and can be controlled to a certain degree by antioxidants. The immune cells use ROS in order to support their functions and, therefore, need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive ROS production. In the present work, the effect of the administration of the antioxidant N-acetylcysteine (NAC) on the redox state of peritoneal macrophages and lymphocytes from mice with lethal endotoxic shock (100 mg/kg i.p. of lipopolysaccharide, LPS), was studied. In both types of immune cells at 0, 2, 4, 12 and 24 h after LPS injection, an increase of ROS, of the proinflammatory cytokine tumor necrosis factor alpha (TNFα), the lipid peroxidation (malonaldehyde levels, MDA), inducible nitric oxide synthase (iNOS) expression and the oxidized/reduced glutathione (GSSG/GSH) ratio, as well as a decrease of enzymatic antioxidant defenses, such as superoxide dismutase (SOD) and catalase (CAT) activity, was observed. The injection of NAC (150 mg/kg i.p. at 30 min after LPS injection) decreased the ROS, the TNFα the MDA levels, iNOS expression and the GSSG/GSH ratio, and increased the antioxidant defenses in both macrophages and lymphocytes. Moreover, the NAC treatment prevented the activation of nuclear translocation of the nuclear factor κB (NF-κB), which regulates ROS, inflammatory cytokines and antioxidant levels. Our present results provide evidence that both cell types have a relevant role in the pathogenesis of endotoxic shock, and that NAC, by improving the redox state of these immune cells, could increase mouse survival. Thus, antioxidants could offer an alternative treatment of human endotoxic shock.  相似文献   

19.
The excessive production of reactive oxygen species (ROS) associated with inflammation leads to oxidative stress, which is involved with the high mortality from several diseases such as endotoxic shock and can be controlled to a certain degree by antioxidants. The immune cells use ROS in order to support their functions and, therefore, need adequate levels of antioxidant defenses in order to avoid the harmful effect of an excessive ROS production. In the present work, the effect of the administration of the antioxidant N-acetylcysteine (NAC) on the redox state of peritoneal macrophages and lymphocytes from mice with lethal endotoxic shock (100 mg/kg i.p. of lipopolysaccharide, LPS), was studied. In both types of immune cells at 0, 2, 4, 12 and 24 h after LPS injection, an increase of ROS, of the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha), the lipid peroxidation (malonaldehyde levels, MDA), inducible nitric oxide synthase (iNOS) expression and the oxidized/reduced glutathione (GSSG/GSH) ratio, as well as a decrease of enzymatic antioxidant defenses, such as superoxide dismutase (SOD) and catalase (CAT) activity, was observed. The injection of NAC (150 mg/kg i.p. at 30 min after LPS injection) decreased the ROS, the TNFalpha the MDA levels, iNOS expression and the GSSG/GSH ratio, and increased the antioxidant defenses in both macrophages and lymphocytes. Moreover, the NAC treatment prevented the activation of nuclear translocation of the nuclear factor kappaB (NF-kappaB), which regulates ROS, inflammatory cytokines and antioxidant levels. Our present results provide evidence that both cell types have a relevant role in the pathogenesis of endotoxic shock, and that NAC, by improving the redox state of these immune cells, could increase mouse survival. Thus, antioxidants could offer an alternative treatment of human endotoxic shock.  相似文献   

20.
Inhalation of the crystalline form of silica is associated with a variety of pathologies, from acute lung inflammation to silicosis, in addition to autoimmune disorders and cancer. Basic science investigators looking at the mechanisms involved with the earliest initiators of disease are focused on how the alveolar macrophage interacts with the inhaled silica particle and the consequences of silica-induced toxicity on the cellular level. Based on experimental results, several rationales have been developed for exactly how crystalline silica particles are toxic to the macrophage cell that is functionally responsible for clearance of the foreign particle. For example, silica is capable of producing reactive oxygen species (ROS) either directly (on the particle surface) or indirectly (produced by the cell as a response to silica), triggering cell-signaling pathways initiating cytokine release and apoptosis. With murine macrophages, reactive nitrogen species are produced in the initial respiratory burst in addition to ROS. An alternative explanation for silica toxicity includes lysosomal permeability, by which silica disrupts the normal internalization process leading to cytokine release and cell death. Still other research has focused on the cell surface receptors (collectively known as scavenger receptors) involved in silica binding and internalization. The silica-induced cytokine release and apoptosis are described as the function of receptor-mediated signaling rather than free radical damage. Current research ideas on silica toxicity and binding in the alveolar macrophage are reviewed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号