首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma-aminobutyric acid, type A (GABA(A)) receptors are ligand-gated chloride channels and are the major inhibitory transmitter receptors in the central nervous system. The majority of these receptors is composed of two alpha, two beta, and one gamma subunits. To identify sequences important for subunit assembly, we generated C-terminally truncated and chimeric gamma(3) constructs. From their ability to associate with full-length alpha(1) and beta(3) subunits, we concluded that amino acid sequence gamma(3)(70-84) either directly interacts with alpha(1) or beta(3) subunits or stabilizes a contact site elsewhere in the protein. The observation that this sequence contains amino acid residues homologous to gamma(2) residues contributing to the benzodiazepine-binding site at the alpha(1)/gamma(2) interface suggested that in alpha(1)beta(3)gamma(3) receptors the sequence gamma(3)(70-84) is located at the alpha(1)/gamma(3) interface. In the absence of alpha(1) subunits this sequence might allow assembly of beta(3) with gamma(3) subunits. Other experiments indicated that sequences gamma(3)(86-95) and gamma(3)(94-107), which are homologous to previously identified sequences important for assembly of gamma(2) subunits, are also important for assembly of gamma(3) subunits. This indicates that during assembly of the GABA(A) receptor, more than one N-terminal sequence is important for binding to the same neighboring subunit. Whether the three sequences investigated are involved in direct interaction or stabilize other regions involved in intersubunit contacts has to be further studied.  相似文献   

2.
GABA(A) receptors are chloride ion channels that can be opened by GABA, the most important inhibitory transmitter in the CNS. In the mammalian brain the majority of these pentameric receptors is composed of two alpha, two beta and one gamma subunit. To achieve the correct order of subunits around the pore, each subunit must form specific contacts via its plus (+) and minus (-) side. To identify a sequence on the beta3 subunit important for assembly, we generated various full-length or truncated chimeric beta3 constructs and investigated their ability to assemble with alpha1 and gamma2 subunits. It was demonstrated that replacement of the sequence beta3(76-89) by the homologous alpha1 sequence impaired assembly with alpha1 but not with gamma2 subunits in alpha1beta3gamma2-GABA(A) receptors. Other experiments indicated that assembly was impaired via the beta3(-) side of the chimeric subunit. Within the sequence beta3(76-89) the sequence beta3(85-89) seemed to be of primary importance for assembly with alpha1 subunits. A comparison with the structure of the acetylcholine-binding protein supports the conclusion that the sequence beta3(85-89) is located at the beta3(-) side and indicates that it contains amino acid residues that might directly interact with the (+) side of the neighbouring alpha1 subunit.  相似文献   

3.
Key to understanding how receptor diversity is achieved and controlled is the identification of selective assembly signals capable of distinguishing between other subunit partners. We have identified that the beta1-3 subunits exhibit distinct assembly capabilities with the gamma2L subunit. Similarly, analysis of an assembly box in alpha1-(57-68) has revealed an absolute requirement for this region in the assembly of alphabeta receptors. Furthermore, a selective requirement for a single amino acid (Arg-66), previously shown to be essential for the formation of the low affinity GABA binding site, is observed. This residue is critical for the assembly of alpha1beta2 but not alpha1beta1 or alpha1beta3 receptors. We have confirmed the ability of the previously identified GKER signal in beta3 to direct the assembly of betagamma receptors. The GKER signal is also involved in driving assembly with the alpha1 subunit, conferring the ability to assemble with alpha1(R66A) on the beta2 subunit. Although this signal is sufficient to permit the formation of beta2gamma2 receptors, it is not necessary for beta3gamma2 receptor formation, suggesting the existence of alternative assembly signals. These findings support the belief that GABA(A) receptor assembly occurs via defined pathways to limit the receptor diversity.  相似文献   

4.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABA(A) receptor (GABA(A)R alpha 1 beta 3 gamma 2). There is strong evidence that the heteropentameric receptor contains two alpha 1, two beta 3, and one gamma 2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 configurations. Here we use molecular modeling to thread the relevant GABA(A)R subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABA(A) sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABA(A) sequences were threaded onto the AChBP template in the gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangements. Only the gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangement satisfied three known criteria: (1) alpha 1 His(102) binds at the gamma 2 subunit interface in proximity to gamma 2 residues Thr(142), Phe(77), and Met(130); (2) alpha 1 residues 80-100 bind near gamma 2 residues 91-104; and (3) alpha 1 residues 58-67 bind near the beta 3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

5.
Two gamma-aminobutyric acid(A) (GABA(A)) receptor chimeras were designed in order to elucidate the structural requirements for GABA(A) receptor desensitization and assembly. The (alpha1/gamma2) and (gamma2/alpha1) chimeric subunits representing the extracellular N-terminal domain of alpha1 or gamma2 and the remainder of the gamma2 or alpha1 subunits, respectively, were expressed with beta2 and beta2gamma2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (alpha1/gamma2)beta2 and (alpha1/gamma2)beta2gamma2 but not the (gamma2/alpha1)beta2 and (gamma2/alpha1)beta2gamma2 subunit combinations formed functional receptor complexes as shown by whole-cell patch-clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (alpha1/gamma2)-containing receptors was pronounced, as opposed to the staining of the (gamma2/alpha1)-containing receptors, which was only slightly higher than background. To explain this, the (alpha1/gamma2) and (gamma2/alpha1) chimeras may act like alpha1 and gamma2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (alpha1/gamma2) chimeric subunit had characteristics different from the alpha1 subunit, since the (alpha1/gamma2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch-clamp recordings, which was independent of whether the chimera was expressed in combination with beta2 or beta2gamma2. Surprisingly, the (alpha1/gamma2)(gamma2/alpha1)beta2 subunit combination did desensitize, indicating that the C-terminal segment of the alpha1 subunit may be important for desensitization. Moreover, desensitization was observed for the (alpha1/gamma2)beta2gamma2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

6.
Two invariant tryptophan residues on the N-terminal extracellular region of the rat alpha1 subunit, Trp-69 and Trp-94, are critical for the assembly of the GABA(A) (gamma-aminobutyric acid, type A) receptor into a pentamer. These tryptophans are common not only to all GABA(A) receptor subunits, but also to all ligand-gated ion channel subunits. Converting each Trp residue to Phe and Gly by site-directed mutagenesis allowed us to study the role of these invariant tryptophan residues. Mutant alpha1 subunits, coexpressed with beta2 subunits in baculovirus-infected Sf9 cells, displayed high affinity binding to [(3)H]muscimol, a GABA site ligand, but no binding to [(35)S]t-butyl bicyclophosphorothionate, a ligand for the receptor-associated ion channel. Neither [(3)H]muscimol binding to intact cells nor immunostaining of nonpermeabilized cells gave evidence of surface expression of the receptor. When expressed with beta2 and gamma2 polypeptides, the mutant alpha1 polypeptides did not form [(3)H]flunitrazepam binding sites though wild-type alpha1 polypeptides did. The distribution of the mutant receptors on sucrose gradients suggests that the effects on ligand binding result from the inability of the mutant alpha1 subunits to form pentamers. We conclude that Trp-69 and Trp-94 participate in the formation of the interface between alpha and beta subunits, but not of the GABA binding site.  相似文献   

7.
Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.  相似文献   

8.
gamma-Aminobutyric acid, type A (GABA(A)) receptor alpha1 subunits containing a cysteine mutation at a position in the channel mouth (H109C) surprisingly formed a spontaneous cross-link with each other in receptors composed of alpha1H109C, beta3, and gamma2 subunits. Cross-linking of two alpha1H109C subunits did not significantly change the affinity of [(3)H]muscimol or [(3)H]Ro15-1788 binding in alpha1H109Cbeta3gamma2 receptors, but GABA displayed a reduced potency for activating chloride currents. On reduction of the disulfide bond, however, GABA activation as well as diazepam modulation was similar in mutated and wild-type receptors, suggesting that these receptors exhibited the same subunit stoichiometry and arrangement. Disulfide bonds could not be reoxidized by copper phenanthroline after having been reduced in completely assembled receptors, suggesting that cross-linking can only occur at an early stage of assembly. The cross-link of alpha1H109C subunits and the subsequent transport of the resulting homodimers to the cell surface caused a reduction of the intracellular pool of alpha1H109C subunits and a reduced formation of completely assembled receptors. The formation of alpha1H109C homodimers as well as of correctly assembled GABA(A) receptors containing cross-linked alpha1H109C subunits could indicate that homodimerization of alpha1 subunits via contacts located in the channel mouth might be one starting point of GABA(A) receptor assembly. Alternatively the assembly mechanism might have started with the formation of heterodimers followed by a cross-link of mutated alpha1 subunits at the heterotrimeric stage. The formation of cross-linked alpha1H109C homodimers would then have occurred independently in a separate pathway.  相似文献   

9.
Comparative models of GABA(A) receptors composed of alpha1 beta3 gamma2 subunits were generated using the acetylcholine-binding protein (AChBP) as a template and were used for predicting putative engineered cross-link sites between the alpha1 and the gamma2 subunit. The respective amino acid residues were substituted by cysteines and disulfide bond formation between subunits was investigated on co-transfection into human embryonic kidney (HEK) cells. Although disulfide bond formation between subunits could not be observed, results indicated that mutations studied influenced assembly of GABA(A) receptors. Whereas residue alpha1A108 was important for the formation of assembly intermediates with beta3 and gamma2 subunits consistent with its proposed location at the alpha1(+) side of GABA(A) receptors, residues gamma2T125 and gamma2P127 were important for assembly with beta3 subunits. Mutation of each of these residues also caused an impaired expression of receptors at the cell surface. In contrast, mutated residues alpha1F99C, alpha1S106C or gamma2T126C only impaired the formation of receptors at the cell surface when co-expressed with subunits in which their predicted interaction partner was also mutated. These data are consistent with the prediction that the mutated residue pairs are located close to each other.  相似文献   

10.
11.
Human embryonic kidney 293 cells transfected with alpha1beta1gamma2, alpha1beta2gamma2, alpha1beta3gamma2, alpha1beta1, alpha1beta2, alpha1beta3, beta3gamma2, or beta3 subunits formed gamma-aminobutyric acidA receptors on the cell surface that could be clustered by rapsyn. In contrast, alpha1, beta1, beta2, or gamma2 subunits, or alpha1gamma2 subunit combinations could not be detected on the surface of transfected cells and could not be clustered by rapsyn. Experiments investigating the ability of rapsyn to cluster chimeras consisting of the N-terminus of the beta3 subunit and the remaining part of the alpha1, beta2 or gamma2 subunits indicated that the intracellular domains of beta1, beta2, beta3 or gamma2 subunits, but not those of alpha1 subunits are able to form sites mediating clustering by rapsyn. These results demonstrate that rapsyn has the potential to cluster the majority of GABA(A) receptor subtypes via beta or gamma2 subunits. Further experiments will have to clarify the physiological importance of this observation.  相似文献   

12.
Selective modulators of gamma-aminobutyric acid, type A (GABA(A)) receptors containing alpha(4) subunits may provide new treatments for epilepsy and premenstrual syndrome. Using mouse L(-tk) cells, we stably expressed the native GABA(A) receptor subunit combinations alpha(3)beta(3)gamma(2,) alpha(4)beta(3)gamma(2), and, for the first time, alpha(4)beta(3)delta and characterized their properties using a novel fluorescence resonance energy transfer assay of GABA-evoked depolarizations. GABA evoked concentration-dependent decreases in fluorescence resonance energy transfer that were blocked by GABA(A) receptor antagonists and, for alpha(3)beta(3)gamma(2) and alpha(4)beta(3)gamma(2) receptors, modulated by benzodiazepines with the expected subtype specificity. When combined with alpha(4) and beta(3), delta subunits, compared with gamma(2), conferred greater sensitivity to the agonists GABA, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol (THIP), and muscimol and greater maximal efficacy to THIP. alpha(4)beta(3)delta responses were markedly modulated by steroids and anesthetics. Alphaxalone, pentobarbital, and pregnanolone were all 3-7-fold more efficacious at alpha(4)beta(3)delta compared with alpha(4)beta(3)gamma(2.) The fluorescence technique used in this study has proven valuable for extensive characterization of a novel GABA(A) receptor. For GABA(A) receptors containing alpha(4) subunits, our experiments reveal that inclusion of delta instead of gamma(2) subunits can increase the affinity and in some cases the efficacy of agonists and can increase the efficacy of allosteric modulators. Pregnanolone was a particularly efficacious modulator of alpha(4)beta(3)delta receptors, consistent with a central role for this subunit combination in premenstrual syndrome.  相似文献   

13.
Density gradient centrifugation of native and recombinant gamma-aminobutyric acid, type A (GABA(A)) receptors was used to detect assembly intermediates. No such intermediates could be identified in extracts from adult rat brain or from human embryonic kidney (HEK) 293 cells transfected with alpha(1), beta(3), and gamma(2) subunits and cultured at 37 degrees C. However, subunit dimers, trimers, tetramers, and pentamers were found in extracts from the brain of 8-10-day-old rats and from alpha(1)beta(3)gamma(2) transfected HEK cells cultured at 25 degrees C. In both systems, alpha(1), beta(3), and gamma(2) subunits could be identified in subunit dimers, indicating that different subunit dimers are formed during GABA(A) receptor assembly. Co-transfection of HEK cells with various combinations of full-length and C-terminally truncated alpha(1) and beta(3) or alpha(1) and gamma(2) subunits and co-immunoprecipitation with subunit-specific antibodies indicated that even subunits containing no transmembrane domain can assemble with each other. Whereas alpha(1)gamma(2), alpha(1)Ngamma(2), alpha(1)gamma(2)N, and alpha(1)Ngamma(2)N, combinations exhibited specific [(3)H]Ro 15-1788 binding, specific [(3)H]muscimol binding could only be found in alpha(1)beta(3) and alpha(1)beta(3)N, but not in alpha(1)Nbeta(3) or alpha(1)Nbeta(3)N combinations. This seems to indicate that a full-length alpha(1) subunit is necessary for the formation of the muscimol-binding site and for the transduction of agonist binding into channel gating.  相似文献   

14.
GABA(A) receptors in the CNS are pentameric molecules composed of alpha, beta, gamma, delta, epsilon and theta subunits. Studies on transfected cells have shown that GABA(A) receptor beta subunit isoforms can direct alpha1 subunit localization within the cell. To examine the role of selected subunits in governing GABA(A) receptor expression in neurons, cultures of rat cerebellar granule cells were grown with antisense or sense oligodeoxynucleotides (ODNs) specific for the alpha 1, beta 2 or gamma 2 subunits. These subunits are all expressed in granule neurons where they are thought to contribute to an abundant receptor type. Following ODN treatment, subunit expression and distribution were examined by western blotting, immunocytochemistry and RT-PCR. Treatment of the cultures with the antisense, but not the corresponding sense, ODNs reduced the levels of the targeted subunit polypeptides. In addition, the beta 2 antisense ODN reduced the level of the alpha1 subunit polypeptide without altering the level of its mRNA. In contrast, treatment with the beta 2 subunit antisense ODN did not alter gamma 2 subunit polypeptide expression, distribution or mRNA level. These findings suggest that the alpha1 subunit requires a beta subunit for assembly into GABA(A) receptors in cerebellar granule neurons.  相似文献   

15.
H Cinar  E M Barnes 《Biochemistry》2001,40(46):14030-14036
The endocytosis of GABA(A) receptors was investigated in HEK 293 cells expressing receptor alpha1beta2- and alpha1beta2gamma2-subunit combinations. For assessment of internalized receptors by radioimmunoassay or immunofluorescence, a triple c-myc epitope was introduced into the amino terminus of the beta2 subunit. An assay based on biotin inaccessibility was used for alpha1 subunits. GABA(A) alpha1beta2- and alpha1beta2gamma2-subunit receptors were internalized with a t(1/2) of 5.5 min at 37 degrees C. With both subunit combinations, phorbol 12-myristate 3-acetate enhanced internalization by nearly 100%. Treatment of the cells with hypertonic sucrose prevented both the basal and phorbol ester-induced endocytosis of GABA(A) receptors. GF 109203X, an inhibitor of protein kinase C, blocked the stimulation by phorbol ester but had no detectable effect on basal receptor endocytosis. Coexpression with a dominant-negative mutant of dynamin (K44A) led to a 100% enhancement of GABA(A) receptor internalization, while the endocytosis of beta(2)-adrenergic receptors was completely prevented. The results indicate that the endocytosis of GABA(A) alpha1beta2-subunit receptors in HEK cells is constitutive, positively modulated by activation of protein kinase C, and occurs by a mechanism that requires neither the participation of a GABA(A) receptor gamma2 subunit nor a clathrin-mediated pathway.  相似文献   

16.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

17.
A GABA(A) receptor alpha1 subunit epilepsy mutation (alpha1(A322D)) introduces a negatively charged aspartate residue into the hydrophobic M3 transmembrane domain of the alpha1 subunit. We reported previously that heterologous expression of alpha1(A322D)beta2gamma2 receptors in mammalian cells resulted in reduced total and surface alpha1 subunit protein. Here we demonstrate the mechanism of this reduction. Total alpha1(A322D) subunit protein was reduced relative to wild type protein by a similar amount when expressed alone (86 +/- 6%) or when coexpressed with beta2 and gamma2S subunits (78 +/- 6%), indicating an expression reduction prior to subunit oligomerization. In alpha1beta2gamma2S receptors, endoglycosidase H deglycosylated only 26 +/- 5% of alpha1 subunits, consistent with substantial protein maturation, but in alpha1(A322D)beta2gamma2S receptors, endoglycosidase H deglycosylated 91 +/- 4% of alpha1(A322D) subunits, consistent with failure of protein maturation. To determine the cellular localization of wild type and mutant subunits, the alpha1 subunit was tagged with yellow (alpha1-YFP) or cyan (alpha1-CFP) fluorescent protein. Confocal microscopic imaging demonstrated that 36 +/- 4% of alpha1-YFPbeta2gamma2 but only 5 +/- 1% alpha1(A322D)-YFPbeta2gamma2 colocalized with the plasma membrane, whereas the majority of the remaining receptors colocalized with the endoplasmic reticulum (55 +/- 4% alpha1-YFPbeta2gamma2S, 86 +/- 3% alpha1(A322D)-YFP). Heterozygous expression of alpha1-CFPbeta2gamma2S and alpha1(A322D)-YFPbeta2gamma2S or alpha1-YFPbeta2gamma2S and alpha1(A322D)-CFPbeta2gamma2S receptors showed that membrane GABA(A) receptors contained primarily wild type alpha1 subunits. These data demonstrate that the A322D mutation reduces alpha1 subunit expression after translation, but before assembly, resulting in endoplasmic reticulum-associated degradation and membrane alpha1 subunits that are almost exclusively wild type subunits.  相似文献   

18.
GABA(A) receptors are the major inhibitory transmitter receptors in the central nervous system. They are chloride ion channels that can be opened by gamma-aminobutyric acid (GABA) and are the targets of action of a variety of pharmacologically and clinically important drugs. GABA(A) receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 different subunits gives rise to the formation of a large variety of distinct GABA(A) receptor subtypes in the brain. The majority of GABA(A) receptors seems to be composed of two alpha, two beta and one gamma subunit and the occurrence of a defined subunit stoichiometry and arrangement in alphabetagamma receptors strongly indicates that assembly of GABA(A) receptors proceeds via defined pathways. Based on the differential ability of subunits to interact with each other, a variety of studies have been performed to identify amino acid sequences or residues important for assembly. Such residues might be involved in direct protein-protein interactions, or in stabilizing direct contact sites in other regions of the subunit. Several homo-oligomeric or hetero-oligomeric assembly intermediates could be the starting point of GABA(A) receptor assembly but so far no unequivocal assembly mechanism has been identified. Possible mechanisms of assembly of GABA(A) receptors are discussed in the light of recent publications.  相似文献   

19.
The subunit combinations alpha1beta2gamma2, alpha6beta2gamma2, and alpha1alpha6beta2gamma2 of the GABA(A) receptor were functionally expressed in Xenopus oocytes. The properties of the resulting ion currents were characterized by using electrophysiological techniques. The concentration-response curve of the channel agonist GABA for alpha1alpha6beta2gamma2 showed a single apparent component characterized by an EC(50) of 107 +/- 26 microM (n = 4). It was different from the one for alpha1beta2gamma2, which had an EC(50) of 41 +/- 9 microM (n = 4), that for alpha6beta2gamma2, with an EC(50) of 6.7 +/- 1.9 microM (n = 5), and those for alpha1beta2 and alpha1alpha6beta2. There was no appreciable functional expression of alpha6beta2. Allosteric responses of alpha1alpha6beta2gamma2 to diazepam were intermediate to those of alpha1beta2gamma2 and alpha6beta2gamma2, and allosteric responses to flumazenil were comparable to the ones for alpha1beta2gamma2. The inhibition by furosemide of the currents elicited by GABA in alpha1alpha6beta2gamma2 [IC(50) = 298 +/- 116 microM (n = 7), assuming only one component] was not identical with inhibition of alpha6beta2gamma2 (IC(50) = 38 +/- 2 microM, n = 4), alpha1beta2gamma2 (IC(50) = 5,610 +/- 910 microM, n = 5), or a mixture of these components (assuming two components). These findings indicate unambiguously the formation of functional GABA(A) receptors containing two different alpha subunits, alpha1 and alpha6, with properties different from those of alpha1beta2gamma2 and alpha6beta2gamma2. Furthermore, we provide evidence for the facts that in the Xenopus oocyte (a) the formation of the different receptor types depends on the relative abundance of cRNAs coding for the different receptor subunits and (b) that functional dual subunit combinations alphabeta do not form in the presence of cRNA coding for the gamma subunit.  相似文献   

20.
GABA(A) receptor function was studied in cerebral cortical vesicles prepared from rats after intracerebroventricular microinjections of antisense oligodeoxynucleotides (aODNs) for alpha1, gamma2, beta1, beta2 subunits. GABA(A) receptor alpha1 subunit aODNs decreased alpha1 subunit mRNA by 59+/-10%. Specific [3H]GABA binding was decreased by alpha1 or beta2 subunit aODNs (to 63+/-3% and 64+/-9%, respectively) but not changed by gamma2 subunit aODNs (94+/-5%). Specific [3H]flunitrazepam binding was increased by alpha1 or beta2 subunit aODNs (122+/-8% and 126+/-11%, respectively) and decreased by gamma2 subunit aODNs (50+/-13%). The "knockdown" of specific subunits of the GABA(A )receptor significantly influenced GABA-stimulated 36Cl- influx. Injection of alpha1 subunit aODNs decreased basal 36Cl- influx and the GABA Emax; enhanced GABA modulation by diazepam; and decreased antagonism of GABA activity by bicuculline. Injection of gamma2 subunit aODNs increased the GABA Emax; reversed the modulatory efficacy of diazepam from enhancement to inhibition of GABA-stimulation; and reduced the antagonist effect of bicuculline. Injection of beta2 subunit aODNs reduced the effect of diazepam whereas treatment with beta1 subunit aODNs had no effect on the drugs studied. Conclusions from our studies are: (1) alpha1 subunits promote, beta2 subunits maintain, and gamma2 subunits suppress GABA stimulation of 36Cl- influx; (2) alpha1 subunits suppress, whereas beta2, and gamma2 subunits promote allosteric modulation by benzodiazepines; (3) diazepam can act as an agonist or inverse agonist depending on the relative composition of the receptor subunits: and (4) the mixed competitive/non-competitive effects of bicuculline result from activity at alpha1 and gamma2 subunits and the lack of activity at beta1 and beta2 subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号