首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.  相似文献   

3.
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone.  相似文献   

4.
The historical influence of landscape on the quantitative variables and a special group of hyporheos in streams with similar origin but different catchment landscapes and forest management was studied. The study was conducted in two streams: (i) a preserved forested natural stream where critical ecosystem processes were unaltered by human activities and (ii) a stream with the strong anthropogenic stressors (e.g., logging, agriculture, pasture), impacting the system for the last 500 years. Some parameters were strongly related to these land use: conductivity, fine benthic organic matter (FBOM), orthophosphate (P_PO4) and periphyton content all increased along the gradient from the natural stream to the urban-dominated catchment. The density of interstitial assemblages corresponded with the conductivity (at P < 0.05) and was higher on the stream in urban-dominated catchments; and the Harpacticoida taxa richness, dominated by the family Canthocamptidae, was also greater here. The Multiple Regression Analysis shows that the rate of deforestation had had the most significant effect on the density of hyporheos. Among of crustacean fauna the representatives of epigean harpacticoids from (of) family Canthocamptidae, dominated.  相似文献   

5.
Sample storage can significantly influence measured microbial activities in stream fine benthic organic matter (FBOM), possibly confounding effects of sample variability and short-term changes in activity. Denitrification potential, acetylene reduction and respiration rates, mineralizable N and extractable ammonium concentrations, and beta-glucosidase and phosphatase enzyme activities of FBOM from first-order mountain streams in the western Oregon Cascade Mountains were assayed at various times after collection to determine potential storage effects. Denitrification potential, phosphatase activity, and extractable ammonium remained stable over a minimum of 11 h of storage at 5 degrees C. Mineralizable N concentrations, respiration rates, and beta-glucosidase activity all decreased within 12 h of collection. Results varied for acetylene reduction. Once assay conditions were established, denitrification potential and respiration rates were linear with incubation time. Based on paired t-tests, measures of acetylene reduction, denitrification potential, respiration rate, beta-glucosidase activity, and phosphatase activity were generally similar at a 1-wk interval within the same stream reaches.  相似文献   

6.
Mediterranean climates predispose aquatic systems to both flood and drought periods, therefore, stream sediments may be exposed to desiccation periods. Changes in oxygen concentrations and sediment water content influence the biotic processes implicated in nitrogen dynamics. The objectives of this study were to identify (1) the changes of inorganic nitrogen in stream sediments during the transition from wet to dry conditions, and (2) the underlying processes in N dynamics and its regulation. Extractable sediment NO3 -N and NH4 +-N, organic matter and extractable organic carbon content were assessed during natural desiccation in microcosms with sediments from an intermittent Mediterranean stream. In agreement with our initial hypothesis, our results showed how the NO3 -N content of the sediment was enhanced during the first 10 days of sediment drying, whereas NH4 +-N was lost by 14 days post-drying. During the first 10 days, sediment desiccation seemed to stimulate the net N-mineralization and net nitrification from sediments. Afterwards, the extractable NO3 -N concentration sharply dropped, which may be attributed to lower ammonium-oxidation rates as ammonium and organic matter are depleted, and to an increase in NO3 -N consumption by microbial populations. Denitrification was inhibited, with a significant decrease as % water-filled pore space lowered. We hypothesize that the sediment inorganic N content enhanced during sediment desiccation could be released as part of the N pulse observed after sediment rewetting. However, the stream N availability after rewetting dried sediments would differ depending on desiccation period duration.  相似文献   

7.
1. Catchments export nutrients to aquatic ecosystems at rates and ratios that are strongly influenced by land use practices, and within aquatic ecosystems nutrients can be processed, retained, lost to the atmosphere, or exported downstream. The stoichiometry of carbon and nutrients can influence ecosystem services such as water quality, nutrient limitation, biodiversity, eutrophication and the sequestration of nutrients and carbon in sediments. However, we know little about how nutrient stoichiometry varies along the pathway from terrestrial landscapes through aquatic systems. 2. We studied the stoichiometry of nitrogen and phosphorus exported by three catchments of contrasting land use (forest versus agriculture) and in the water column and sediments of downstream reservoirs. We also related stoichiometry to phytoplankton nutrient limitation and the abundance of heterocystous cyanobacteria. 3. The total N : P of stream exports varied greatly among catchments and was 18, 54 and 140 (molar) in the forested, mixed‐use and agricultural catchment, respectively. Total N : P in the mixed layers of the lakes was less variable but ordered similarly: 35, 52 132 in the forested, mixed‐use and agricultural lake, respectively. In contrast, there was little variation among systems in the C : N and C : P ratios of catchment exports or in reservoir seston. 4. Phytoplankton in the forested lake were consistently N limited, those in the agricultural lake were consistently P limited, and those in the mixed‐use lake shifted seasonally from P‐ to N limitation, reflecting N : P supply ratios. Total phytoplankton and cyanobacteria biomass were highest in the agricultural lake, but heterocystous (potentially N fixing) cyanobacteria were most abundant in the forested lake, corresponding to low N : P ratios. 5. Despite large differences in catchment export and water column N : P ratios, the N : P of sediment burial (integrated over several decades) was very low and remarkably similar (4.3–7.3) across reservoirs. N and P budgets constructed for the agricultural reservoir suggested that denitrification could be a major loss of N, and may help explain the relatively low N : P of buried sediment. 6. Our results show congruence between the catchment export N : P, reservoir N : P, phytoplankton N versus P limitation and the dominance of heterocystous cyanobacteria. However, the N : P stoichiometry of sediments retained in the lakes was relatively insensitive to catchment stoichiometry, suggesting that a common set of biogeochemical processes constrains sediment N : P across lakes of contrasting catchment land use.  相似文献   

8.
1. Adult Pacific salmon (Oncorhynchus spp.) transport marine nutrients to fresh waters and disturb sediments during spawning. The relative importance of nutrient fertilisation and benthic disturbance by salmon spawners can be modulated by environmental conditions (e.g. biological, chemical and physical conditions in the catchment, including human land use). 2. To determine the importance of the environmental context in modifying the uptake and incorporation of salmon‐derived material into stream biota, we measured the nitrogen (δ15N) and carbon (δ13C) isotopic composition of benthic algae (i.e. epilithon) and juvenile coho salmon (Oncorhynchus kisutch) in seven streams across a timber‐harvest gradient (8–69% catchment area harvested), both before and during the salmon run. Conditional bootstrap modelling simulations were used to assess variability in the response of epilithon and juvenile coho salmon to spawning salmon. 3. In response to spawning salmon, epilithon exhibited enrichment in both δ15N (mean: 1.5‰) and δ13C (2.3‰). Juvenile coho were also enriched in both δ15N (0.7‰) and δ13C (1.4‰). Conditional bootstrap models indicate decreased variation in data as spatial replication increases, suggesting that the number of study sites can influence the results of Pacific salmon isotope studies. 4. Epilithon isotopic enrichment was predicted by environmental conditions, with δ15N enrichment predicted by stream temperature and timber harvest (R2 = 0.87) and δ13C enrichment by discharge, sediment size, timber harvest and spawner density (R2 = 0.96). Furthermore, we found evidence for a legacy effect of salmon spawners, with pre‐spawner δ15N and δ13C of both epilithon and juvenile coho predicted by salmon run size in the previous year. 5. Our results show that the degree of incorporation of salmon‐derived nitrogen and carbon differs among streams. Furthermore, the environmental context, including putative legacy effects of spawning salmon, can influence background isotopic concentrations and utilisation of salmon‐derived materials in southeast Alaska salmon streams. Future studies should consider the variation in isotopic composition of stream biota when deciding on the number of study sites and samples needed to generate meaningful results.  相似文献   

9.
1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4‐year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (Δ NBR) from satellite imagery to quantify the percentage of each catchment’s riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year‐to‐year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter‐annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area.  相似文献   

10.
This study examined the processes underlying land and riparian degradation, by quantifying soil erosion and gully growth in slopes adjacent to cropland. The concentration of suspended sediments was consistently higher in cultivated catchments, where gully expansion causes 2–3 times more landslides than occur in forested catchments. Sediment from gullies contributed about 34% of the total sediment in the cultivated catchment. There has been increasing erosion and sedimentation on the valley floor over the past 20 years, both because of the expansion of land under cultivation and because of the mechanization of agriculture since the 1960s has reduced the infiltration capacity of cropland, making it easier for erosion to occur when it rains. Most of the finer sediment is transported to the sea, where it affects coastal ecosystems, while the coarser sediment, such as sand, remains in the stream and fills the spaces between gravel on the streambed. This eliminates habitat suitable for fish and invertebrates; the density of macro-invertebrates in cultivated catchments is only 10–20% of that in forested catchments. Effective stream restoration will require both construction measures to prevent slopes from eroding and the regulation of land use, including reforestation at the borders of agricultural land.  相似文献   

11.
1. Due to the hierarchical organization of stream networks, land use changes occurring at larger spatial scales (i.e. the catchment) can affect physical, chemical and biological characteristics at lower spatial scales, ultimately altering stream structure and function. Anthropogenic effects on streams have primarily been documented using structural metrics such as water chemistry, channel alteration and algal biomass. Functional parameters, including metrics of nutrient retention and metabolism, are now being widely used as indicators of stream condition. 2. Within this hierarchical context, we used a multivariate approach to examine how structural and functional (i.e. nutrient retention and metabolism) attributes of streams are related to catchment variables, including land use. The study was done in 13 streams located within a single Mediterranean catchment, but draining sub‐catchments with contrasting land use. 3. At the catchment scale, results showed two contrasting land use gradients: (i) from forested‐ to urban‐dominated catchments and (ii) from low to moderate agricultural‐dominated catchments. Variation in structural and functional parameters was strongly related to these land use gradients. Specifically, NH4+ demand (measured as the uptake velocity, Vf) decreased along the gradient from forested‐ to urban‐dominated catchments primarily in response to increases in stream nutrient concentrations [NH4+, dissolved organic nitrogen (DON) and carbon (DOC)]. Both primary production and respiration increased along the gradient of agricultural development in response to increases in algal biomass (chlorophyll a). Soluble reactive phosphorus demand was not related to any of the land use gradients. 4. Our results illustrate the connections among factors operating at different spatial scales (i.e. from catchments to streams) and their distinct influence on stream ecosystem function. Managers should take into consideration these connections when designing stream management and restoration plans. Because ecologically successful stream management and restoration is expected to restore function as well as structure to streams, the use of appropriate measures of functional processes is required. Nutrient retention and metabolism parameters are good candidates to fill this gap.  相似文献   

12.
Changes in atmospheric deposition, stream water chemistry, and solute fluxes were assessed across 15 small forested catchments. Dramatic changes in atmospheric deposition have occurred over the last three decades, including a 70% reduction in sulphur (S) deposition. These changes in atmospheric inputs have been associated with expected changes in levels of acidity, sulphate and base cations in streams. Soil retention of S appeared to partially explain rates of chemical recovery. In addition to these changes in acid–base chemistry we also observed unexpected changes in nitrogen (N) biogeochemistry and nutrient stoichiometry of stream water, including decreased stream N concentrations. Among all catchments the average flux of dissolved inorganic nitrogen (DIN) was best predicted by average runoff, soil chemistry (forest floor C/N) and levels of acid deposition (both S and N). The rate of change in stream DIN flux, however, was much more closely correlated with reductions in rates of S deposition rather than those of DIN. Unlike DIN fluxes, the average concentrations as well as the rates of decline in streamwater nitrate (NO3) concentration over time were tightly linked to stream dissolved organic carbon/dissolved organic nitrogen ratios DOC/DON and DON/TP rather than catchment characteristics. Declines in phosphorus adsorption with increasing soil pH appear to contribute to the relationship between C, N, and P in our study catchments. Our observations suggest that catchment P availability and its alteration due to environmental changes (e.g. acidification) might have profound effects on N cycling and catchment N retention that have been largely unrecognized.  相似文献   

13.
1. Elevated allochthonous inputs of nutrients and sediments to aquatic ecosystems are associated with eutrophication and sedimentation. Reservoirs receive substantial subsidies of nutrients and sediments from catchments due to their large catchment : lake area ratios. We examined the effect of elevated subsidies of sediments and/or dissolved nutrients on the success (survival, growth, biomass and condition factor) of larval gizzard shad (Dorosoma cepedianum), a widespread and dominant omnivorous fish in reservoir ecosystems. 2. We simulated allochthonous agricultural subsides by manipulating dissolved nutrients and sediment inputs in a 2 × 2 factorial design in experimental mesocosms. We predicted that larval fish success would be greater under elevated nutrients. However, we propose two alternative hypotheses with respect to the overall effect of allochthonous sediment inputs. If sediment inputs negatively affect larval gizzard feeding success, larval success would be highest when only nutrients are added and lowest when only sediments are added (+N > +N+S ≥ C > +S). If high turbidity enhances larval foraging activity (due to greater contrast between prey and background), we predict that larval success would be highest when both subsidy types (nutrients and sediment) are elevated, intermediate when either nutrients or sediments are added and the lowest when no subsidies are added (+N+S > +N ≥ +S > C). 3. Our results indicate that elevated nutrient and sediment conditions enhanced larval gizzard shad biomass, but the overall nutrient addition effect was greater than the sediment addition effect (+N ~ +N+S > +S > C). We observed differential effects of nutrient and sediment inputs on larval survival, growth and condition factors. 4. The enhancement of fish biomass in elevated nutrients (+N, +N+S) relative to control conditions was associated with improved gizzard shad survival and not greater growth. The enhancement of fish biomass in the elevated sediment treatment (+S) relative to the control conditions was caused by an increase in survival that more than compensated for a negative effect of sediment addition on growth. 5. Our findings support the recommendation that reservoir management practices must consider the links between land use practices and food web dynamics. Our results suggest that reduction of subsidies of nutrients and sediments to productive reservoirs would decrease survival of larval gizzard shad due to lower food availability.  相似文献   

14.
Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north‐west of Ireland subject to different extents of forest plantation cover (4–64% of catchment area). 210Pb‐dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ13C) and nitrogen (δ15N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two‐ to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39–116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β‐carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.  相似文献   

15.
1. The hydrologic connectivity between landscape elements and streams means that fragmentation of terrestrial habitats could affect the distribution of stream faunas at multiple spatial scales. We investigated how catchment‐ and site‐scale influences, including proportion and position of forest cover within a catchment, and presence of riparian forest cover affected the distribution of a diadromous fish. 2. The occurrence of koaro (Galaxias brevipinnis) in 50‐m stream reaches with either forested or non‐forested riparian margins at 172 sites in 24 catchments on Banks Peninsula, South Island, New Zealand was analysed. Proportions of catchments forested and the dominant position (upland or lowland) of forest within catchments were determined using geographical information system spatial analysis tools. 3. Multivariate analysis of variance indicated forest position and proportion forested at the catchment accounted for the majority of the variation in the overall proportion of sites in a catchment with koaro. 4. Where forest was predominantly in the lower part of the catchments, the presence of riparian cover was important in explaining the proportion of sites with koaro. However, where forest was predominantly in the upper part of the catchment, the effect of riparian forest was not as strong. In the absence of riparian forest cover, no patterns of koaro distribution with respect to catchment forest cover or forest position were detected. 5. These results indicate that landscape elements, such as the proportion and position of catchment forest, operating at catchment‐scales, influence the distribution of diadromous fish but their influence depends on the presence of riparian vegetation, a site‐scale factor.  相似文献   

16.
1. Despite real improvement in the water quality of many previously eutrophic lakes, the recovery of submerged vegetation has been poor. This lack of recovery is possibly caused by the accumulation of organic matter on the top layer of the sediment, which is produced under eutrophic conditions. Hence, our objective was to study the combined effects of quantity and lability of sediment organic matter on the biomass of Echinodorus repens and Littorella uniflora and on the force required to uproot plants of L. uniflora. 2. Lake sediments, rich in organic matter, were collected from four lakes, two with healthy populations of isoetids and two from which isoetids had disappeared. The four lake sediments were mixed with sand to prepare a range of experimental sediments that differed in quantity and lability of sediment organic matter. Two isoetid species, E. repens and L. uniflora, were grown in these sediments for 8 weeks. Sediment quality parameters, including elemental composition, nutrient availability and mineralisation rates, were determined on the raw sources of sediment from the lakes. Porewater and surface water were analysed for the chemical composition in all mixtures. At the end of the experiment, plants were harvested and their biomass, tissue nutrient concentration and (for L. uniflora) uprooting force were measured. 3. For both species, all plants survived and showed no signs of stress on all types of sediment. The biomass of E. repens increased as the fraction of organic matter was increased (from 6 to 39% of organic content, depending upon sediment type). However, in some of the sediment types, a higher fraction of organic matter led to a decline in biomass. The biomass of L. uniflora was less responsive to organic content and was decreased significantly only when the least labile sediment source was used to create the gradient of organic matter. The increase in shoot biomass for both species was closely related to higher CO2 concentrations in the porewater of the sediment. The force required to uproot L. uniflora plants over a range of sediment organic matter fitted a Gaussian model; it reached a maximum at around 15% organic matter and declined significantly above that. 4. Increasing organic matter content of the sediment increased the biomass of isoetid plants, as the positive effects of higher CO2 production outweighed the negative effects of low oxygen concentration in more (labile) organic sediments. However, sediment organic matter can adversely affect isoetid survival by promoting the uprooting of plants.  相似文献   

17.
Concentrations of major nutrients (C, N, P) and acid soluble metals (Ca, Mg, K, Al, Fe, Mn, Pb, and Zn) were determined in modern (0–1 cm) and pre-acidification (5–10 cm) sediment layers collected from 37 alpine and 3 forest lakes in the Tatra Mountains (Slovakia, Poland) in 1996–1998. Sediment composition reflected catchment characteristics and productivity of lakes. In the sediments of alpine lakes, C and N concentrations decreased and Mg increased with a decreasing proportion of vegetation and soil in the catchment. Decreasing Ca:Mg ratios in sediments along the vegetation gradient was inverse to that in water, and could be associated with different ratios of cations in water leachate from catchments and in solids which enter the lake due to soil erosion. Phosphorus concentrations increased with the proportion of moraine areas, with till soils rich in P. Concentrations of C, N, P, and Ca in sediments positively correlated to their concentrations in water. Sediment concentrations of Al and Al:Ca ratios increased with decreasing sediment and water pH. A negative correlation between water pH and concentrations of organic C in water and sediments indicated the important impact of organic acids on the acid status of the lakes exposed to higher terrestrial export of organic matter. Compared to the pre-acidification period, the modern sediments had significantly higher Fe, Mn, Zn, Pb, and K, but lower Mg concentrations. The Zn and Pb enrichment was more evident in oligotrophic alpine lakes than in more productive forest lakes and was independent of lake water or sediment pH. Fe and Mn concentrations in the modern sediments were higher than in ambient soils and bedrock, while those in pre-acidification sediments were similar to contemporary soils and to the rock layer. The enrichment of the modern sediments with Fe and Mn thus probably resulted from both their redox recycling and ecosystem acidification.  相似文献   

18.
Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as well as with the addition of freeze‐dried Spirulina or individual high‐molecular‐weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high temperature‐induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0°C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also revealed temporally distinct sulfate reduction phases, consistent with 16S rRNA clone library detection of multiple thermophilic Desulfotomaculum spp. enriched at 50°C. Incubations with four different fluorescently labelled polysaccharides at 4°C and 50°C showed that the thermophilic population in Arctic sediments produce a different suite of polymer‐hydrolysing enzymes than those used in situ by the cold‐adapted microbial community. Over time, dormant marine microorganisms like these are buried in marine sediments and might eventually encounter warmer conditions that favour their activation. Distinct enzymatic capacities for organic polymer degradation could allow specific heterotrophic populations like these to play a role in sustaining microbial metabolism in the deep, warm, marine biosphere.  相似文献   

19.
Dissolved organic carbon (DOC) and total and inorganic nitrogen and phosphorus concentrations were determined over 3 years in headwater streams draining two adjacent catchments. The catchments are currently under different land use; pasture/grazing vs plantation forestry. The objectives of the work were to quantify C and nutrient export from these landuses and elucidate the factors regulating export. In both catchments, stream water dissolved inorganic nutrient concentrations exhibited strong seasonal variations. Concentrations were highest during runoff events in late summer and autumn and rapidly declined as discharge increased during winter and spring. The annual variation of stream water N and P concentrations indicated that these nutrients accumulated in the catchments during dry summer periods and were flushed to the streams during autumn storm events. By contrast, stream water DOC concentrations did not exhibit seasonal variation. Higher DOC and NO3 concentrations were observed in the stream of the forest catchment, reflecting greater input and subsequent breakdown of leaf-litter in the forest catchment. Annual export of DOC was lower from the forested catchment due to the reduced discharge from this catchment. In contrast however, annual export of nitrate was higher from the forest catchment suggesting that there was an additional NO3 source or reduction of a NO3 sink. We hypothesize that the denitrification capacity of the forested catchment has been significantly reduced as a consequence of increased evapotranspiration and subsequent decrease in streamflow and associated reduction in the near stream saturated area.  相似文献   

20.
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in‐stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号