首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active immunization against pro-angiogenic growth factors or their receptors is an emerging strategy for controlling tumor growth and angiogenesis. Previous studies in rodent tumor models have indicated that immunization against xenogeneic growth factors is more likely to induce effective anti-tumor responses than immunization against the autologous growth factor. However, the effectiveness or safety of the xenogeneic vaccination approach has not been previously assessed in a clinically relevant outbred, spontaneous tumor model. Therefore, we investigated the safety and anti-tumor and anti-angiogenic effects of a xenogeneic vascular endothelial cell growth factor (VEGF) vaccine in pet dogs with spontaneous cancer. Nine dogs with soft tissue sarcoma were immunized with a recombinant human VEGF vaccine over a 16-week period. The effects of immunization on antibodies to human and canine VEGF, circulating VEGF concentrations, tumor microvessel density (MVD), and tumor growth were assessed. The xenogeneic VEGF vaccine was well-tolerated by all dogs and resulted in induction of humoral responses against both human and canine VEGF in animals that remained in the study long enough to receive multiple immunizations. Three of five multiply immunized dogs also experienced sustained decreases in circulating plasma VEGF concentrations and two dogs had a significant decrease in tumor MVD. The overall tumor response rate was 30% for all treated dogs in the study. We conclude therefore that a xenogeneic VEGF vaccine may be a safe and effective alternative means of controlling tumor growth and angiogenesis.  相似文献   

2.
Eleven years have passed since the start of the first trial of dendritic cell (DC) vaccination for melanoma. A review of 54 trials was performed to evaluate the relationship between clinical effects and vaccine parameters. Significant differences were found between use of immature and mature DCs with regard to progressive disease (PD), between stage III and IV for clinical response, between use and non-use of adjuvants with regard to stable disease (SD) in treatment with tumor/tumor lysate-pulsed DCs, between positive and negative delayed-type hypersensitivity (DTH) for PD, and between increased and unchanged interferon (IFN)-γ-secreting T cells for clinical response. These results are consistent with the partial efficacy of vaccination with mature DCs in early stage melanoma and the partial correlation of efficacy with positive DTH and increased IFN-γ-secreting T cells. DC vaccination alone had a limited clinical effect and a modified regimen is needed to enhance antigen-specific cytotoxic T cells and decrease immunosuppression.  相似文献   

3.
Metastatic melanoma is poorly responsive to treatment, and immunotherapeutic approaches are potentially beneficial. Predictors of clinical response are needed to identify suitable patients. We sought factors associated with melanoma-specific clinical response following intradermal vaccination with autologous melanoma peptide and particulate hepatitis B antigen (HBsAg)-exposed immature monocyte-derived dendritic cells (MDDC). Nineteen patients with metastatic melanoma received a maximum of 8, 2-weekly vaccinations of DC, exposed to HBsAg in addition to autologous melanoma peptides. A further 3 patients received an otherwise identical vaccine that did not include HBsAg. Patients were assessed 1-2 monthly for safety, disease volume, and cellular responses to HBsAg and melanoma peptide. There was no significant toxicity. Of 19 patients receiving HBsAg-exposed DC, 9 primed or boosted a cellular response to HBsAg, and 10 showed no HBsAg response. HBsAg-specific responses were associated with in vitro T cell responses to melanoma peptides and to phytohemagglutinin (PHA). Zero out of 10 non-HBsAg-responding and 4/9 HBsAg-responding patients achieved objective melanoma-specific clinical responses or disease stabilization - 1 complete and 2 partial responses and 1 case of stable disease ( P=0.018). Development of melanoma-specific cellular immunity and T cell responsiveness to mitogen were greater in the group of patients responding to HBsAg. Therefore stimulation of an immune response to nominal particulate antigen was necessary when presented by melanoma peptide-exposed immature DC, to achieve clinical responses in metastatic melanoma. Since general immune competence may be a determinant of treatment response, it should be assessed in future trials on DC immunotherapy.  相似文献   

4.
Successful active immunization against cancer requires induction of immunity against self or mutated self Ags. However, immunization against self Ags is difficult. Xenogeneic immunization with orthologous Ags induces cancer immunity. The present study evaluated the basis for immunity induced by active immunization against a melanoma differentiation Ag, gp100. Tumor rejection of melanoma was assessed after immunization with human gp100 (hgp100) DNA compared with mouse gp100 (mgp100). C57BL/6 mice immunized with xenogeneic full-length hgp100 DNA were protected against syngeneic melanoma challenge. In contrast, mice immunized with hgp100 DNA and given i.p. tolerizing doses of the hgp100 D(b)-restricted peptide, hgp100(25-33), were incapable of rejecting tumors. Furthermore, mice immunized with DNA constructs of hgp100 in which the hgp100(25-27) epitope was substituted with the weaker D(b)-binding epitope from mgp100 (mgp100(25-27)) or a mutated epitope unable to bind D(b) did not reject B16 melanoma. Mice immunized with a minigene construct of hgp100(25-33) rejected B16 melanoma, whereas mice immunized with the mgp100(25-33) minigene did not develop protective tumor immunity. In this model of xenogeneic DNA immunization, the presence of an hgp100 heteroclitic epitope with a higher affinity for MHC created by three amino acid (25 to 27) substitutions at predicted minor anchor residues was necessary and sufficient to induce protective tumor immunity in H-2(b) mice with melanoma.  相似文献   

5.
Dendritic cells (DCs) electroporated with mRNA encoding CD70, CD40L and a constitutively active toll-like receptor 4 (TriMix-DC) have an increased T-cell stimulatory capacity. In a prospective phase IB clinical trial, we treated melanoma patients with intradermal and intravenous injections of autologous TriMix-DC co-electroporated with mRNA encoding full-length MAGE-A3, MAGE-C2, tyrosinase and gp100. We report here the immunological and clinical results obtained in one patient with a particularly favorable outcome. This patient had stage IV-M1c melanoma with documented progression during dacarbazine chemotherapy and received 5 TriMix-DC injections. Following DC therapy, a broad CD8(+) T-cell response against multiple epitopes derived from all four treatment antigens was found in the blood and among T cells derived from DTH biopsy. In addition, CD4(+) T cells recognizing different MAGE-A3-derived epitopes were detected in DTH-derived cells. A spontaneous anti-MAGE-C2 CD8(+) T-cell response was present prior to TriMix-DC therapy and increased during treatment. The tumor response was assessed with 18-fluorodeoxyglucose-positron emission/computed tomography. We documented a partial tumor response according to RECIST criteria with a marked reduction in (18)F-FDG-uptake by lung, lymph node and bone metastases. The patient remains free from progression after 12 months of follow-up. This case report indicates that administration of autologous TriMix-DC by the combined intradermal and intravenous route can mediate a durable objective tumor response accompanied by a broad T-cell response in a chemorefractory stage IV-M1c melanoma patient.  相似文献   

6.

Background

Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor.

Methods

The protective effects and therapeutic anti-tumor immunity mediated by the DNA vaccine were investigated in mouse models. Anti-angiogenesis effects were detected by immunohistochemical staining and the alginate-encapsulate tumor cell assay. The mechanism of action of the DNA vaccine was primarily explored by detection of auto-antibodies and CTL activity.

Results

The DNA vaccine elicited a strong, protective and therapeutic anti-tumor immunity through an anti-angiogenesis mechanism in mouse models, mediated by the stimulation of an antigen-specific response against mFlk-1.

Conclusion

Our study shows that a DNA vaccine based on a xenogeneic homologue plasmid DNA induced autoimmunity against VEGFR-2, resulting in inhibition of tumor growth. Such vaccines may be clinically relevant for cancer immunotherapy.  相似文献   

7.
Anticancer vaccines have been extensively studied in animal models and in clinical trials. While vaccination can lead to tumor protection in numerous murine models, objective tumor regressions after anticancer vaccination in clinical trials have been rare. B16 is a poorly immunogenic murine melanoma that has been extensively used in anticancer vaccination experiments. Because B16 has been widely used, different vaccination strategies can be compared. We reviewed the results obtained when B16 was treated with five common vaccine types: recombinant viral vaccines, DNA vaccines, dendritic cell vaccines, whole-tumor vaccines, and peptide vaccines. We also reviewed the results obtained when B16 was treated with vaccines combined with adoptive transfer of tumor antigen-specific T cells. We found several characteristics of vaccination regimens that were associated with antitumor efficacy. Many vaccines that incorporated xenogeneic antigens exhibited more potent anticancer activity than vaccines that were identical except that they incorporated the syngeneic version of the same antigen. Interleukin-2 enhanced the antitumor efficacy of several vaccines. Finally, several effective regimens generated large numbers of tumor antigen-specific CD8(+) T cells. Identification of vaccine characteristics that are associated with antitumor efficacy may aid in the development of more effective anticancer vaccination strategies.  相似文献   

8.
In this study, a human melanoma vaccine induced antibody responses in mice that varied significantly from animal to animal. BALB/c mice were immunized to a xenogenic human polyvalent melanoma vaccine that has been used in phase II clinical trials in over 600 patients. Mice were bled biweekly for up to 6 weeks to measure antibody responses. IgG antibody responses to the melanoma vaccine components were detectable within 2 weeks but were much stronger at 4 and 6 weeks. When the pooled sera were further analyzed by Western blot, a complex pattern of antigens was detected. When individual sera from identically immunized mice were assayed by Western blot, a consistent, reproducible pattern of antigen recognition was not seen. Rather, we found significantly different antibody responses among the mice. Both the intensity of antibody responses and the pattern of antigens recognized varied from animal to animal. Although there appeared to be immunodominant antigens that produced antibody responses in most mice, no single antigen induced antibody responses in all mice. These results demonstrate that polyvalent vaccines induce heterogeneous antibody responses in mice treated identically. Analysis of the response of selected melanoma patients immunized to the same vaccine revealed similar antibody responses to the antigens in the melanoma vaccine. Heterogeneity may hamper interpretation of vaccine immunogenicity and relevant tumor antigens in humans.  相似文献   

9.
A major problem in evaluating the effectiveness of tumor cell vaccination and other biological therapies is the variability of experimental models. In this study we have further developed and characterized a model for metastatic melanoma that approximates the major clinical stages of metastatic dissemination: stage I-growth of the primary (local) tumor, stage II-dissemination to regional lymph nodes, and stage III-metastasis to distant organs (lungs). C57BL/6 mice were challenged subcutaneously with B16 F10 murine melanoma cells in the midtail, and within 3 weeks 100% of the mice had local tumors growing in their tails. By 5–7 weeks after challenge, most of the mice had developed metastases to the inguinal lymph nodes and subsequently had metastatic colonies in the lungs and in the bone marrow. Preimmunization of mice with a formalinized extracellular antigen vaccine, derived from B16F10 melanoma cells, provided partial inhibition of the growth of the primary melanoma tumors, as well as reducing the number of metastases to the regional (inguinal) lymph nodes and lungs along with concomitantly increasing survival time. This model for melanoma metastasis provides a reasonable and reproducible test system for the study of anti-melanoma immunity and the different cellular and humoral mechanisms involved.This work was supported in part by National Institutes of Health grants R37 CA45148 and R30 CA13943  相似文献   

10.
gp100 is a melanoma-associated antigen found to carry immunogenic epitopes that can induce a CTL response against tumor cells. Production and purification of large quantities of this polypeptide may be important in the context of diagnosis and vaccinating against melanoma. To overcome the hydrophobic nature of gp100, we cloned and expressed only a part of the protein, and obtained a hydrophilic recombinant polypeptide (HR-gp100) that contained most of the immunogenic peptides. High yield was achieved in an Escherichia coli expression system. The protein was purified by AKTA Prime using anionic-columns. Polyclonal antibodies developed in chicken against HR-gp100 were efficient at detecting gp100 in melanoma cells, as determined by Western blot analysis and by immunohistochemistry. HR-gp100 can be used to develop a vaccine against melanoma. Antibodies to HR-gp100 may be used to detect tumors of melanocytic origin or to determine the level of gp100 expression in tumors prior to immunotherapy with the protein or one of its peptides.  相似文献   

11.
Adoptive therapy of cancer has been mostly tested in advanced cancer patients using tumor-infiltrating lymphocytes (TIL). Following discouraging results likely due to poor tumor-specificity of TIL and/or high tumor burden, recent studies reiterate the enormous potential of this therapy, particularly in melanoma. We had performed a phase II/III randomised trial on 88 stage III melanoma patients, who received autologous TIL plus IL-2 or IL-2 alone, after complete tumour resection. We reported previously clinical and immunological results supporting the ability of tumor reactive TIL infusion to prevent further development of the melanoma disease and to increase overall survival of patients bearing only one tumor invaded lymph node. The absence of correlation between overall and disease-free survival and the amount of infused tumor-specific TIL suggested that therapeutic efficiency might depend on other parameters such as antigen specificity, function or persistence of TIL. Here we studied the recognition of a panel of 38 shared tumor-associated antigens (TAA) by TIL infused to the patients included in this assay, in order to determine if treatment outcome could correlate with particular antigen specificities of infused TIL. Results show that the infusion of Melan-A/MART-1 reactive TIL appears to be associated with a longer relapse-free survival for HLA-A2 patients. These results further support the relevance of Melan-A/MART-1 antigen as a prime target for immunotherapy protocols in melanoma.  相似文献   

12.
Targeting melanoma inhibitor of apoptosis protein with cancer immunotherapy   总被引:4,自引:0,他引:4  
Aberrantly expressed or mutated proteins in cancer cells evoke immune recognition, but host reactions are usually insufficient to prevent disease progression. Vaccination with irradiated tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor (GM-CSF) augments host immunity through improved tumor antigen presentation by recruited dendritic cells and macrophages. By analyzing the immune response of a metastatic melanoma patient who achieved a long-term response to vaccination, we identified melanoma inhibitor of apoptosis protein (ML-IAP) as a target for immune-mediated tumor destruction. Vaccination stimulated a coordinated cellular and humoral reaction to ML-IAP that was associated with extensive tumor necrosis, whereas lethal disease progression was linked with the loss of ML-IAP expression and the absence of intra-tumoral lymphocyte infiltrates. These findings demonstrate that ML-IAP can serve as a tumor rejection antigen, although additional vaccine targets will be required to circumvent immune escape and tumor heterogeneity.  相似文献   

13.
Anti-tumor vaccines capable of activating both CD4 and CD8 T cells are preferred for long lasting T cell responses. Induction of a tumor-specific T-cell response can be induced by tumor vaccines that target innate immunity. The ensuing T-cell response depends on efficient antigen presentation from phagocytosed cargo in the antigen presenting cell and is augmented by the presence of Toll-like receptor (TLR) ligands within the cargo. Biodegradable polymers are useful for vaccine delivery in that they are phagocytosed by antigen presenting cells (APCs) and could potentially be loaded with both the antigen and immune stimulatory TLR agents. This study was undertaken to evaluate the effect of poly lactic-co-glycolic acid (PLGA) polymer particles loaded with antigenic tumor lysate and immune stimulatory CpG oligonucleotides on induction of tumor specific immunity in a mouse model of melanoma. We found that after delivery, these immune stimulatory antigen loaded particles (ISAPs) efficiently activated APCs and were incorporated into lysosomal compartments of macrophages and dendritic cells. ISAP vaccination resulted in remarkable T cell proliferation, but only modestly suppressed tumor growth of established melanoma. Due to this discordant effect on tumor immunity we evaluated the role of regulatory T cells (Treg) and found that ISAP vaccination or tumor growth alone induced prolific expansion of tumor specific Treg. When the Treg compartment was suppressed with anti-CD25 antibody, ISAP vaccination induced complete antigen-specific immunity in a prophylactic model. ISAP vaccination is a novel tumor vaccine strategy that is designed to co-load the antigen with a TLR agonist enabling efficient Ag presentation. Targeting of T-reg expansion during vaccination may be necessary for inducing effective tumor-specific immunity. Supported in part by grants from NIH R21 CA100652-01, the American Cancer Society IRG-77-004-28 and Michael C. Sandler.  相似文献   

14.
In situ T cells in melanoma   总被引:3,自引:0,他引:3  
During the past decade new insights have been gained into the role of T lymphocytes in the host's immune response to cancer in general and to melanoma in particular. Several melanoma-associated antigens (MAA) recognized by T cells have been characterized, and a number of HLA class I- and class II-restricted peptides have been identified. These antigens can be divided into three different groups: tumor-associated testis-specific antigens, melanocyte differentiation antigens, and mutated or aberrantly expressed antigens. These proteins give rise to several antigenic peptides. The number of known melanoma-associated peptides that can induce killing by cytotoxic T-lymphocytes (CTL) exceeds 30 and is still increasing. In line with these findings, clinical data indicate that the immune system is essential in the control of tumor growth. A brisk infiltration of lymphocytes is associated with a favorable prognosis, and complete or partial regression of primary melanoma occurs quite frequently. Furthermore, immunomodulatory therapies have accomplished complete or partial tumor regression in a number of patients. However, the immune response is in most cases inadequate to control tumor growth as tumor progression often occurs. Hence, the coexistence of a cellular immune response in melanoma lesions, demonstrated by the presence of clonally expanded T cells, remains a major paradox of tumor immunology. In the present paper we review current knowledge regarding tumor infiltrating lymphocytes (TIL) in melanoma and discuss possible mechanisms of escape from immune surveillance. Received: 20 March 1999 / Accepted: 3 March 1999  相似文献   

15.
The use of anti-idiotype (anti-id) vaccines for immunotherapy of human cancers is attractive, as immunization with true anti-id reagents (Ab2 beta) has been shown to induce both cellular and humoral immunity, frequently when the original antigen does not, or when a state of anergy to the self-expressed tumor-associated antigen exists. The aim of this study was to investigate the potential of an anti-id vaccine approach to the glioma-associated antigen epidermal growth factor receptor variant III (EGFRvIII) for human clinical trials. By using conventional methodology, seven rat mAbs specific for the binding site of the murine anti-EGFRvIII-specific mAb Y10, as defined by the ability to inhibit the binding of mAb Y10 to EGFRvIII expressed on cells or as purified protein, were generated, and a subset (3/7) was found to be true Ab2 beta, as defined by the ability to induce the formation of antibody directed against EGFRvIII in two species (mouse and rabbit) when used as immunogen. The ability of these three Ab2 beta to elicit a protective anti-tumor response when used as a vaccine in the syngeneic, subcutaneous C57Bl/6-B16mseEGFRvIII tumor model was investigated. Following vaccination with one Ab2 beta mAb (2C7), 6/20 mice failed to develop tumor upon challenge, and 3/20 mice with outgrowing tumors exhibited dramatic regression of incipient tumors. Vaccination with a second mAb (5G8) resulted in one tumor-free survivor and one tumor regressor; vaccination with the third Ab2 beta mAb (7D3) did not confer protection, but did significantly increase the latency period until tumor outgrowth in all vaccinated recipients. The ability of Ab2 beta mAb 2C7 to induce an anti-EGFRvIII response in non-human primates was investigated by using the saponin adjuvant approved for human clinical trial, QS-21. Three of three macaques produced anti-EGFRvIII titers, as detected on EGFRvIII-expressing cells by both ELISA and fluorescence-activated cytometric analysis, following six immunizations with Ab2 beta mAb 2C7 and QS-21. The results obtained confirm that an anti-id response in the EGFRvIII antigen system can be induced in rodents, rabbits, and non-human primates, and it may prove a useful adjunct to immunotherapeutic approaches to EGFRvIII-positive gliomas, breast carcinomas, and non-small-cell lung tumors.  相似文献   

16.
The breaking of immune tolerance against self epidermal growth factor receptor (EGFr) should be a useful approach for the treatment of receptor-positive tumors with active immunization. To test this concept, we constructed a plasmid DNA encoding extracellular domain of xenogeneic (human) EGFr (hEe-p) or corresponding control mouse EGFr (mEe-p) and empty vector (c-p). Mice immunized with hEe-p showed both protective and therapeutic antitumor activity against EGFr-positive tumor. Sera isolated from the hEe-p-immunized mice exhibited positive staining for EGFr-positive tumor cells in flow cytometric analysis and recognized a single 170-kDa band in Western blot analysis. Ig subclasses responded to rEGFr proteins were elevated in IgG1, Ig2a, and Ig2b. There was the deposition of IgG on the tumor cells. Adoptive transfer of the purified Igs showed the antitumor activity. The increased killing activity of CTL against EGFr-positive tumor cells could be blocked by anti-CD8 or anti-MHC class I mAb. In vivo depletion of CD4(+) T lymphocytes could completely abrogate the antitumor activity, whereas the depletion of CD8(+) cells showed partial abrogation. The adoptive transfer of CD4-depleted (CD8(+)) or CD8-depleted (CD4(+)) T lymphocytes isolated from mice immunized with hEe-p vaccine showed the antitumor activity. In addition, the increase in level of both IFN-gamma and IL-4 was found. Taken together, these findings may provide a new vaccine strategy for the treatment of EGFr-positive tumors through the induction of the autoimmune response against EGFr in a cross-reaction between the xenogeneic homologous and self EGFr.  相似文献   

17.
Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP)2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.  相似文献   

18.
Eleven AJCC stage IV melanoma patients with progressive disease after treatment with biochemotherapy were treated with autologous dendritic cells pulsed with heterologous tumor cell lysates. The vaccine used mature DCs (CD1a+++, CD40++, CD80++, CD83+, and CD86+++) generated from peripheral blood monocytes in the presence of GM-CSF and IL-4. After 7 days, DCs were matured with a defined cocktail of cytokines (IL-1+IL-6+TNF-+PGE2) and simultaneously pulsed with lysates of heterologous melanoma cell lines, for 2 days. A total of 4×106 DCs was injected monthly under ultrasound control in an inguinal lymph node of normal appearance. The study was closed when all patients died as a consequence of tumor progression. No sign of toxicity was observed during the study. One patient experienced a partial response lasting 5 months, and two patients showed a mixed response which lasted 3 months. The median survival of the whole group was 7.3 months (range 3–14 months). This vaccination program had specific antitumoral activity in highly pretreated and large tumor burden stage IV melanoma patients and was well tolerated. The clinical responses and the median survival of the group of patients, together with the low toxicity of our DC vaccine, suggest that this approach could be applied to earlier AJCC stage IV melanoma patients.  相似文献   

19.
Our knowledge of the mechanisms underlying tumor-specific immune response and tumor escape has considerably increased. HLA class I antigen defects remain an important tumor escape mechanism since they influence the interactions between tumor cells and specific T and NK cells in the course of malignant disease. We have studied here HLA class I expression in six subcutaneous metastases obtained from a melanoma patient immunized with an autologous melanoma cell vaccine (M-VAX). We report in this paper that HLA class I antigen expression on these metastatic lesions strongly correlated with the course of the disease. The three metastases that were partially regressing at the time of their excision showed a strong HLA class I expression, whereas the progressing ones showed a very weak or negative staining with most of the anti-HLA class I mAbs used. Real-time quantitative PCR of the samples obtained from microdissected tumor tissue revealed a significant difference in the mRNA levels of HLA-ABC heavy chain and beta2m between the two types of metastases, i.e., lower levels in progressing metastases and high levels in regressing ones, confirming the immunohistological findings. This is, to our knowledge, the first report where the clinical outcome of different HLA class I positive and negative melanoma metastases can be clearly correlated with the regression and progression of the disease, respectively.  相似文献   

20.
An attenuated line of Leishmania infantum (L. infantum H-line) has been established by culturing promastigotes in vitro under gentamicin pressure. A vaccine trial was conducted using 103 naive dogs from a leishmaniosis non-endemic area (55 vaccinated and 48 unvaccinated) brought into an endemic area of southeast Iran. No local and/or general indications of disease were observed in the vaccinated dogs immediately after vaccination. The efficacy of the vaccine was evaluated after 24 months (4 sandfly transmission seasons) by serological, parasitological analyses and clinical examination. In western blot analysis of antibodies to L. infantum antigens, sera from 10 out of 31 (32.2%) unvaccinated dogs, but none of the sera from vaccinated dogs which were seropositive at >100, recognized the 21 kDa antigen of L. infantum wild-type (WT). Nine out of 31 (29%) unvaccinated dogs, but none of vaccinated dogs, were positive for the presence of Leishmania DNA. One out of 46 (2.2%) vaccinated dogs and 9 out of 31 (29%) unvaccinated dogs developed clinical signs of disease. These results suggest that gentamicin-attenuated L. infantum induced a significant and strong protective effect against canine visceral leishmaniosis in the endemic area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号