首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study, ethanol was shown to enhance the stimulatory effect of phorbol 12-myristate 13-acetate (PMA), a prominent activator of protein kinase C (PKC), on phospholipase-D (PLD)-mediated hydrolysis of phosphatidylethanolamine (PtdEtn) in NIH 3T3 fibroblasts (Kiss et al. (1991) Eur. J. Biochem. 197, 785-790). Here, the mechanism and possible significance of ethanol-stimulated PtdEtn hydrolysis was further studied. In [14C]ethanolamine-labeled NIH 3T3 fibroblasts, 10 mM ethanol enhanced PMA-induced hydrolysis of PtdEtn 1.5-2.0-fold during a 2.5-15-min incubation period. Other alcohols, including glycerol, methanol, and 1-propanol, also enhanced PMA-induced PtdEtn hydrolysis. Of the other PLD activators tested, ethanol potentiated the PKC-dependent stimulatory effect of bombesin but failed to alter the apparently PKC-independent stimulatory effect of serum. Pretreatment of [14C]ethanolamine-labeled fibroblasts with 200 mM ethanol for 20 min resulted in increased (approx. 2-fold) hydrolysis of [14C]PtdEtn in isolated membranes. In membranes from ethanol-treated, but not from untreated, cells, PMA further enhanced (approx. 1.5-fold) the production of [14C]ethanolamine. Ethanol exerted none of the above stimulatory effects on phosphatidylcholine hydrolysis. These results suggest that the specific stimulatory action of ethanol on PLD-mediated PtdEtn hydrolysis can occur in vivo and may involve increased binding of a regulatory PKC-isoform to membranes.  相似文献   

2.
Mammalian cells express a phospholipase D (PLD)-like enzyme which forms ethanolamine from phosphatidylethanolamine (PtdEtn) by a protein kinase C-alpha (PKC-alpha)-activated, presently unknown, mechanism. Now we report that addition of a PKC-alpha-enriched purified PKC preparation or recombinant PKC-alpha to a plasma membrane-enriched membrane fraction, isolated from leukemic HL60 cells, greatly ( approximately 6.5-fold stimulation) enhanced PtdEtn hydrolysis if the PKC activator phorbol 12-myristate 13-acetate (PMA) and ATP were both present; this was accompanied by PKC-mediated phosphorylation of several membrane proteins. The combined effects of PKC-alpha, ATP, and PMA on [(14)C]PtdEtn hydrolysis were inhibited by GF 109203X (10 microM), an inhibitor of catalytic activity of PKC. In this membrane fraction, PMA alone also had a smaller ( approximately 3.5-fold) stimulatory effect on PtdEtn hydrolysis which was not affected by adding ATP or GF 109203X to the membranes. These results suggest that PMA can stimulate PtdEtn hydrolysis via a PKC-catalyzed phosphorylation mechanism as well as by a phosphorylation-independent process. Transformation of NIH 3T3 fibroblasts by H-ras reduced the effect of PMA on PtdEtn hydrolysis. Furthermore, in NIH 3T3 fibroblasts, scrape-loaded Y13-259 anti Ras antibody enhanced PMA-stimulated hydrolysis of PtdEtn. These results suggest that activation of the PtdEtn-hydrolyzing PLD enzyme by PKC-alpha is inhibited by p21 Ras.  相似文献   

3.
In HeLa cells, increased 1,2-diacylglycerol (1,2-DAG) has been suggested to mediate the stimulatory effect of phorbol 12-myristate 13-acetate (PMA) on phosphatidylcholine (PtdCho) biosynthesis (A. K. Utal, H. Jamil, and D. E. Vance, 1991, J. Biol. Chem. 266, 24,084-24,091). The aim of this study was to examine if 1,2-DAG might have a similar mediatory role in NIH 3T3 fibroblasts. In these cells, PMA-induced hydrolysis of PtdCho and the formation of secondary product 1,2-DAG was inhibited by exposing the cells to either 300 mM ethanol for 15 min (less than 80% inhibition) or 43 degrees C for 60 min (less than 50% inhibition). In contrast, neither ethanol nor heat-treatment caused significant inhibition of PMA-stimulated PtdCho synthesis. These data indicate that in NIH 3T3 fibroblasts, 1,2-DAG is not a mediator of the stimulatory action of PMA on PtdCho synthesis.  相似文献   

4.
The protein kinase C (PKC) activator 12-O-tetradecanoylphorbol 13-acetate (TPA) has been shown to potentiate the stimulatory effect of ethanol on the hydrolysis of phosphatidylethanolamine (PtdEtn) in NIH 3T3 fibroblasts. Following an initial 20-min period, the main product of PtdEtn degradation in cells treated with TPA plus ethanol was ethanolamine phosphate. Here, we have examined the regulatory role of PKC and the possible catalytic role of phospholipase C in the formation of ethanolamine phosphate. TPA, bryostatin, and bombesin, direct or indirect activators of PKC, had similar potentiating effects on ethanol-induced formation of [14C]ethanolamine phosphate from [14C]PtdEtn in [14C]ethanolamine-prelabelled NIH 3T3 fibroblasts. At lower concentrations of ethanol (40-80 mM), significant stimulation of ethanolamine phosphate formation required longer treatments (2 h or longer). The combined effects of TPA (100 nM) and ethanol (50-200 mM) on ethanolamine phosphate formation were not inhibited by the PKC inhibitors staurosporine or 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7). In contrast, these inhibitors significantly inhibited TPA-induced formation of ethanolamine, catalyzed by a phospholipase-D-type enzyme. In membranes isolated from TPA+ethanol-treated cells, enhanced formation of ethanolamine phosphate was maintained for at least 20 min. Down-regulation of PKC by prolonged (24-h) treatment of NIH 3T3 fibroblasts by 300 nM TPA enhanced, while overexpression of alpha-PKC in Balb/c fibroblasts diminished, the stimulatory effect of ethanol on the formation of ethanolamine phosphate. Finally, addition of the protein phosphatase inhibitor okadaic acid (2 microM) to fibroblasts inhibited TPA+ethanol-induced formation of ethanolamine phosphate. These results suggest that alpha-PKC-mediated protein phosphorylation may negatively regulate PtdEtn hydrolysis and that the potentiating effect of TPA may result, at least partly, from increased degradation of this PKC isoform.  相似文献   

5.
Regulation of phospholipase D2 activity by protein kinase C alpha   总被引:1,自引:0,他引:1  
It has been well documented that protein kinase C (PKC) plays an important role in regulation of phospholipase D (PLD) activity. Although PKC regulation of PLD1 activity has been studied extensively, the role of PKC in PLD2 regulation remains to be established. In the present study it was demonstrated that phorbol 12-myristate 13-acetate (PMA) induced PLD2 activation in COS-7 cells. PLD2 was also phosphorylated on both serine and threonine residues after PMA treatment. PKC inhibitors Ro-31-8220 and bisindolylmaleimide I inhibited both PMA-induced PLD2 phosphorylation and activation. However, G? 6976, a PKC inhibitor relatively specific for conventional PKC isoforms, almost completely abolished PLD2 phosphorylation by PMA but only slightly inhibited PLD2 activation. Furthermore, time course studies showed that phosphorylation of PLD2 lagged behind its activation by PMA. Concentration curves for PMA action on PLD2 phosphorylation and activation also showed that PLD2 was activated by PMA at concentrations at which PMA didn't induce phosphorylation. A kinase-deficient mutant of PKCalpha stimulated PLD2 activity to an even higher level than wild type PKCalpha. Co-expression of wild type PKCalpha, but not PKCdelta, greatly enhanced both basal and PMA-induced PLD2 phosphorylation. A PKCdelta-specific inhibitor, rottlerin, failed to inhibit PMA-induced PLD2 phosphorylation and activation. Co-immunoprecipitation studies indicated an association between PLD2 and PKCalpha under basal conditions that was further enhanced by PMA. Time course studies of the effects of PKCalpha on PLD2 showed that as the phosphorylation of PLD2 increased, its activity declined. In summary, the data demonstrated that PLD2 is activated and phosphorylated by PMA and PKCalpha in COS-7 cells. However, the phosphorylation is not required for PKCalpha to activate PLD2. It is suggested that interaction rather than phosphorylation underscores the activation of PLD2 by PKC in vivo and that phosphorylation may contribute to the inactivation of the enzyme.  相似文献   

6.
Y Kim  J M Han  J B Park  S D Lee  Y S Oh  C Chung  T G Lee  J H Kim  S K Park  J S Yoo  P G Suh  S H Ryu 《Biochemistry》1999,38(32):10344-10351
Protein kinase C (PKC) is an important regulator of phospholipase D1 (PLD1). Currently there is some controversy about a phosphorylation-dependent or -independent mechanism of the activation of PLD1 by PKC. To solve this problem, we examined whether PLD1 is phosphorylated by PKC in vivo. For the first time, we have now identified multiple basal phophopeptides and multiple phorbol myristate acetate (PMA) induced phosphopeptides of endogenous PLD1 in 3Y1 cells as well as of transiently expressed PLD1 in COS-7 cells. Down regulation or inhibition of PKC greatly attenuated the PMA-induced phosphorylation as well as the activation of PLD1. In the presence of PMA, purified PLD1 from rat brain was also found to be phosphorylated by PKCalpha in vitro at multiple sites generating seven distinct tryptic phosphopeptides. Four phosphopeptides generated in vivo and in vitro correlated well with each other, suggesting direct phosphorylation of PLD1 by PKCalpha in the cells. Serine 2, threonine 147, and serine 561 were identified as phosphorylation sites, and by mutation of these residues to alanine these residues were proven to be specific phosphorylation sites in vivo. Interestingly, threonine 147 is located in the PX domain and serine 561 is in the negative regulatory "loop" region of PLD1. Mutation of serine 2, threonine 147, or serine 561 significantly reduced PMA-induced PLD1 activity. These results strongly suggest that phosphorylation plays a pivotal role in PLD1 regulation in vivo.  相似文献   

7.
The catalytic domain of overexpressed protein kinase C (PKC)-delta mediates phorbol 12-myristate 13-acetate (PMA)-induced differentiation or apoptosis in appropriate model cell lines. To define the portions of the catalytic domain that are critical for these isozyme-specific functions, we constructed reciprocal chimeras, PKC-delta/epsilonV5 and -epsilon/deltaV5, by swapping the V5 domains of PKC-delta and -epsilon. PKC-delta/epsilonV5 failed to mediate PMA-induced differentiation of 32D cells, showing the essential nature of the V5 domain for PKC-delta's functionality. The other chimera, PKC-epsilon/deltaV5, endowed inactive PKC-epsilon with nearly all PKC-delta's apoptotic ability, confirming the importance of PKC-delta in this function. Green fluorescent protein (GFP)-tagged PKC-deltaV5 and -epsilon/deltaV5 in A7r5 cells showed substantial basal nuclear localization, while GFP-tagged PKC-epsilon and -delta/epsilonV5 showed significantly less, indicating that the V5 region of PKC-delta contains determinants critical to its nuclear distribution. PKC-epsilon/deltaV5-GFP showed much slower kinetics of translocation to membranes in response to PMA than parental PKC-epsilon, implicating the PKC-epsilonV5 domain in membrane targeting. Thus, the V5 domain is critical in several of the isozyme-specific functions of PKC-delta and -epsilon.  相似文献   

8.
Z Kiss 《FEBS letters》1992,308(3):290-292
The potent protein phosphatase inhibitor, okadaic acid, was used to determine the possible role of protein phosphorylation reaction(s) in phorbol ester-induced synthesis and hydrolysis of phosphatidylcholine (PtdCho) in NIH 3T3 fibroblasts. Okadaic acid (2 microM) was found to enhance the stimulatory effects of lower concentrations (2.5-25 nM) of phorbol 12-myristate 13-acetate (PMA) on PtdCho synthesis, but not on PtdCho hydrolysis, after treatments for 30-60 min. These data support a view that in fibroblasts PMA stimulates only PtdCho synthesis, and not PtdCho hydrolysis, by a protein phosphorylation-dependent mechanism.  相似文献   

9.
It has been suggested that protein-protein interaction is important for protein kinase C (PKC) alpha to activate phospholipase D1 (PLD1). To determine the one or more sites on PKCalpha that are involved in binding to PLD1, fragments containing the regulatory domain, catalytic domain, and C1-C3 domain of PKCalpha were constructed and shown to be functional, but they all failed to bind and activate PLD1 in vivo and in vitro. A C-terminal 23-amino acid (aa) deletion mutant of PKCalpha was also found to be inactive. To define the binding/activation site(s) in the C terminus of PKCalpha, 1- to 11-aa deletion mutants were made in this terminus. Deletion of up to 9 aa did not alter the ability of PKCalpha to bind and activate PLDl, whereas a 10-aa deletion was inactive. The residue at position 10 was Phe(663). Mutations of this residue (F663D and F663A) caused loss of binding, activation, and phosphorylation of PLD1, indicating that Phe(663) is essential for these activities. Time course experiments showed that the activation of PLD1 by PMA was much faster than its phosphorylation, and its activity decreased as phosphorylation increased with time. Staurosporine, a PKC inhibitor, completely inhibited PLD1 phosphorylation in response to 4beta-phorbol 12-myristate 13-acetate PMA and blocked the later decrease in PLD activity. The same results were found with the D481E mutant of PKCalpha, which is unable to phosphorylate PLD1. These results indicate that neither the regulatory nor catalytic domains of PKCalpha alone can bind to or activate PLD1 and that a residue in the C terminus of PKCalpha (Phe(663)) is required for these effects. The initial activation of PLD1 by PMA is highly correlated with the binding of PKCalpha. Although PKCalpha can phosphorylate PLD1, this is a relatively slow process and is associated with inactivation of the enzyme.  相似文献   

10.
Many studies have shown that protein kinase C (PKC) is an important physiological regulator of phospholipase D (PLD). However, the role of PKC in agonist-induced PLD activation has been mainly investigated with a focus on the PLD1, which is one of the two PLD isoenzymes (PLD1 and PLD2) cloned to date. Since the expression of PLD2 significantly enhanced phorbol 12-myristate 13-acetate (PMA)- or bradykinin-induced PLD activity in rat pheochromocytoma PC12 cells, we investigated the regulatory mechanism of PLD2 in PC12 cells. Two different PKC inhibitors, GF109203X and Ro-31-8220, completely blocked PMA-induced PLD2 activation. In addition, specific inhibition of PKC delta by rottlerin prevented PLD2 activation in PMA-stimulated PC12 cells. Concomitant with PLD2 activation, PLD2 became phosphorylated upon PMA or bradykinin treatment of PC12 cells. Moreover, rottlerin blocked PMA- or bradykinin-induced PLD2 phosphorylation in PC12 cells. Expression of a kinase-deficient mutant of PKC delta using adenovirus-mediated gene transfer inhibited the phosphorylation and activation of PLD2 induced by PMA in PC12 cells, suggesting the phosphorylation-dependent regulation of PLD2 mediated by PKC delta kinase activity in PC12 cells. PKC delta co-immunoprecipitated with PLD2 from PC12 cell extracts, and associated with PLD2 in vitro in a PMA-dependent manner. Phospho-PLD2 immunoprecipitated from PMA-treated PC12 cells and PLD2 phosphorylated in vitro by PKC delta were resolved by two-dimensional phosphopeptide mapping and compared. At least seven phosphopeptides co-migrated, indicating the direct phosphorylation of PLD2 by PKC delta inside the cells. Immunocytochemical studies of PC12 cells revealed that after treatment with PMA, PKC delta was translocated from the cytosol to the plasma membrane where PLD2 is mainly localized. These results suggest that PKC delta-dependent direct phosphorylation plays an important role in the regulation of PLD2 activity in PC12 cells.  相似文献   

11.
Ethanol and other alcohols have been shown to specifically stimulate phospholipase-D-mediated hydrolysis of phosphatidylethanolamine (PtdEtn) in NIH 3T3 fibroblasts. Here, we further examined the possible mechanism of this ethanol action. Ethanol (10-300 mM) and the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol 13-acetate (TPA) had synergistic stimulatory effects on the degradation of preformed [14C]PtdEtn when added in combination to [14C]ethanolamine-labelled suspended NIH 3T3 cells 30 min after collection of cells by scraping. Scraping caused a transient increase, lasting for less than 30 min, in the cellular content of 1,2-diacylglycerol, another PKC activator. Initially (0-50 min incubation), the main water-soluble product of [14C]PtdEtn degradation in ethanol plus TPA-treated cells was [14C]ethanolamine, while later (90 min) the main product of [14C]PtdEtn hydrolysis was [14C]ethanolamine phosphate in the presence of these agents. Ethanol also potentiated the specific stimulatory effects of sphingosine (through phospholipase D) and 4-hydroxynonenal (not involving phospholipase D) on PtdEtn hydrolysis. The effects of these latter agents were unrelated to PKC activation. These data indicate that the observed potentiating effects of ethanol on PtdEtn hydrolysis do not involve direct regulation of PKC or phospholipase D activities.  相似文献   

12.
The C3H/10T1/2 Cl8 HAbetaC2-1 cells used in this study express a peptide with a sequence shown to bind receptor for activated C-kinase (RACK1) and inhibit cPKC-mediated cell functions. Phorbol myristoyl acetate (PMA) strongly stimulated phosphatidylcholine (PtdCho)-specific phospholipase D (PLD) activity in the C3H/10T1/2 Cl8 parental cell line, but not in Cl8 HAbetaC2-1 cells, indicating that full PLD activity in PMA-treated Cl8 cells is dependent on a functional interaction of alpha/betaPKC with RACK1. In contrast, the PMA-stimulated uptake of choline and its subsequent incorporation into PtdCho, were not inhibited in Cl8 HAbetaC2-1 cells as compared to Cl8 cells, indicating a RACK1-independent but PKC-mediated process. Increased incorporation of labelled choline into PtdCho upon PMA treatment was not associated with changes of either CDP-choline: 1,2-diacylglycerol cholinephosphotransferase activity or the CTP:phosphocholine cytidylyltransferase distribution between cytosol and membrane fractions in Cl8 and Cl8 HAbetaC2-1 cells. The major effect of PMA on the PtdCho synthesis in C3H/10T1/2 fibroblasts was to increase the cellular uptake of choline. As a supporting experiment, we inhibited PMA-stimulated PtdH formation by PLD, and also putatively PtdH-derived DAG, in Cl8 cells with 1-butanol. Butanol did not influence the incorporation of [(14)C]choline into PtdCho. The present study shows: (1) PMA-stimulated PLD activity is dependent on a functional interaction between alpha/betaPKC and RACK1 in C3H/10T1/2 Cl8 fibroblasts; and (2) inhibition of PLD activity and PtdH formation did not reduce the cellular uptake and incorporation of labelled choline into PtdCho, indicating that these processes are not directly regulated by PtdCho-PLD activity in PMA-treated C3H/10T1/2 Cl8 fibroblasts.  相似文献   

13.
Activities of phospholipase D (PLD) in diverse subcellular organelles have been identified but the details of regulatory mechanisms in such locations are unknown. Protein kinase C (PKC) is a major regulator of PLD. Serine 2, threonine 147, and serine 561 residues of phospholipase D1 (PLD1) were determined as sites of phosphorylation by PKC (Kim, Y., Han, J. M., Park, J. B., Lee, S. D., Oh, Y. S., Chung, C., Lee, T. G., Kim, J. H., Park, S. K., Yoo, J. S., Suh, P. G., Ryu, S. H. (1999) Biochemistry 38, 10344-10351). In our present study, a triple mutation of these phosphorylation sites diminished markedly phorbol 12-myristate 13-acetate (PMA)-induced PLD1 activity in COS-7 cells. We looked at the location of the PLD1 phosphorylation by PKC by observing PMA induced band shifts and by use of anti-phospho-PLD1 monoclonal antibody. The shifted PMA-induced proteins and the immunoreactivity of the anti-phospho-PLD1 antibody were mainly found in the caveolin-enriched membrane (CEM) fraction. Depletion of cellular cholesterol led to a loss of this compartmentalization of phosphorylated PLD1 in the CEM. Replacement of the cellular cholesterol led to the restoration of phosphorylated PLD1 in the CEM. Immunocytochemical studies of COS-7 cells revealed that PLD1 was localized in the plasma membrane as well as in the vesicular structures in the cytoplasm, but the phosphorylation of PLD1 occurred only in the plasma membrane. Our results, therefore, show that phosphorylation, and thereby activation, of PLD1 by PKC occurs in the caveolin and cholesterol-enriched low density domain of the plasma membrane in COS-7 cells.  相似文献   

14.
Ahn BH  Park MH  Lee YH  Min do S 《FEBS letters》2007,581(30):5940-5944
Early growth response-1 (Egr-1) is involved in the regulation of cell growth. Here, we found that overexpression of phospholipase D (PLD) isozymes decreased tumor promoter phorbol myristate acetate (PMA)-induced Egr-1 expression and transactivation in glioma cells. Suppression of PMA-induced Egr-1 was dependent on the expression level of PLD isozymes. Overexpression of catalytically inactive PLD, treatment with PA, and prevention of PA dephosphorylation by 1-propranolol significantly suppressed PMA-induced Egr-1 expression. PLD-induced suppression of Egr-1 was reversed by inhibition of phosphatidylinositol 3-kinase (PI3K). Taken together, these results suggest that elevated expression and activity of PLD attenuate PMA-induced Egr-1 expression via PI3K pathway.  相似文献   

15.
Phospholipase D (PLD) is a ubiquitous enzyme that can be activated by extracellular adenosine 5'-triphosphate (ATP) or phorbol 12-myristate 13-acetate (PMA) in B-lymphocytes from subjects with chronic lymphocytic leukaemia (CLL). In this study, ATP- but not PMA-induced PLD stimulation in CLL B-lymphocytes was abolished in the presence of an anti-P2X(7) receptor monoclonal antibody, as well as in B-lymphocytes from CLL subjects homozygous for the Glu(496) to Ala loss-of-function P2X(7) polymorphism. Rottlerin, an inhibitor of novel protein kinase C (PKC) isoforms, but not GF 109203X, an inhibitor of conventional PKC isoforms, impaired the ATP-stimulated PLD activity in CLL B-lymphocytes. In contrast, both inhibitors impaired PLD activity stimulated by PMA, a known mediator of PKC activation. The inhibition of P2X(7)-stimulated PLD activity by rottlerin was attributed to a target downstream of P2X(7) activation, as the ATP-mediated (86)Rb(+) efflux from CLL B-lymphocytes was not altered in the presence of rottlerin. Our results indicate a possible role for novel PKC isoforms in the regulation of P2X(7)-mediated PLD activity.  相似文献   

16.
The function of the c-Raf-1 zinc finger domain in the activation of the Raf kinase was examined by the creation of variant zinc finger structures. Mutation of Raf Cys 165 and Cys 168 to Ser strongly inhibits the Ras-dependent activation of c-Raf-1 by epidermal growth factor (EGF). Deletion of the Raf zinc finger and replacement with a homologous zinc finger from protein kinase C gamma (PKC gamma) (to give gamma/Raf) also abrogates EGF-induced activation but enables a vigorous phorbol myristate acetate (PMA)-induced activation. PMA activation of gamma/Raf does not require endogenous Ras or PKCs and probably occurs through a PMA-induced recruitment of gamma/Raf to the plasma membrane. The impaired ability of EGF to activate the Raf zinc finger variants in situ is attributable, at least in part, to a major decrement in their binding to Ras-GTP; both Raf zinc finger variants exhibit decreased association with Ras (V12) in situ upon coexpression in COS cells, as well as diminished binding in vitro to immobilized, processed COS recombinant Ras(V12)-GTP. In contrast, Raf binding to unprocessed COS or prokaryotic recombinant Ras-GTP is unaffected by Raf zinc finger mutation. Thus, the Raf zinc finger contributes an important component to the overall binding to Ras-GTP in situ, through an interaction between the zinc finger and an epitope on Ras, distinct from the effector loop, that is present only on prenylated Ras.  相似文献   

17.
Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts that resembles the phenotype of scleroderma lung fibroblasts. We now demonstrate that PAR-1 expression is dramatically increased in lung tissue from scleroderma patients, where it is associated with inflammatory and fibroproliferative foci. We also observe that thrombin induces resistance to apoptosis in normal lung fibroblasts, and this process is regulated by protein kinase C (PKC)-epsilon but not by PKC-alpha. Overexpression of a constitutively active (c-a) form of PAR-1 or PKC-epsilon significantly inhibits Fas ligand-induced apoptosis in lung fibroblasts, whereas scleroderma lung fibroblasts are resistant to apoptosis de novo. Thrombin translocates p21Cip1/WAF1, a signaling molecule downstream of PKC, from the nucleus to cytoplasm in normal lung fibroblasts mimicking the localization of p21Cip1/WAF1 in scleroderma lung fibroblasts. Overexpression of c-a PKC-alpha or PKC-epsilon results in accumulation of p21Cip1/WAF1 in the cytoplasm. Depletion of PKC-alpha or inhibition of mitogen-activated protein kinase (MAPK) blocks thrombin-induced DNA synthesis in lung fibroblasts. Inhibition of PKC by calphostin or PKC-alpha, but not PKC-epsilon, by antisense oligonucleotides prevents thrombin-induced MAPK phosphorylation and accumulation of G(1) phase regulatory protein cyclin D1, suggesting that PKC-alpha, MAPK, and cyclin D1 mediate lung fibroblast proliferation. These data demonstrate that two distinct PKC isoforms mediate thrombin-induced resistance to apoptosis and proliferation and suggest that p21Cip1/WAF1 promotes both phenomena.  相似文献   

18.
Bradykinin (BK) and phorbol 12-myristate 13-acetate (PMA) both stimulate the hydrolysis of phosphatidylcholine (PC) in human fibroblasts, resulting in the formation of phosphatidic acid (PA) and diacylglycerol (DG) (Van Blitterswijk, W.J., Hilkmann, H., de Widt, J., and Van der Bend, R.L. (1990) J. Biol. Chem. 266, 10337-10343). Stimulation with BK resulted in the rapid and synchronous formation of [3H]choline and [3H]myristoyl-PA from the correspondingly prelabeled PC, indicative of phospholipase D (PLD) activity. In the presence of ethanol or n-butanol, transphosphatidylation by PLD resulted in the formation of [3H]phosphatidylethanol or - butanol, respectively, at the cost of PA and DG formation. This suggests that PC-derived DG is generated via a PLD/PA phosphohydrolase pathway. A more pronounced but delayed formation of these products was observed by PMA stimulation. The Ca2+ ionophore ionomycin also activated PLD and accelerated (synergized) the response to PMA. Both [3H] choline and [3H]phosphocholine were released into the extracellular medium in a time- and stimulus-dependent fashion, without apparent changes in the high intracellular levels of [3H]phosphocholine. The protein kinase C (PKC) inhibitors staurosporin and 1-O-hexadecyl-2-O-methylglycerol inhibited BK- and PMA-induced activation of PLD. Down-regulation of PKC by long-term pretreatment of cells with phorbol ester caused a dramatic drop in background [3H]choline levels, while subsequent stimulation with BK, ionomycin, or PMA failed to increase these levels and failed to induce transphosphatidylation. From these results we conclude that PLD activation is entirely mediated by (downstream of) PKC. Unexpectedly, however, BK stimulation of these PKC-depleted cells caused a marked generation of DG from PC within 15 s, which was not seen in BK-stimulated control cells, suggesting PC breakdown by a phospholipase C (PLCc). We conclude that cells stimulated with BK generate DG via both the PLCc and the PLD/PA hydrolase pathway, whereas PMA stimulates mainly the latter pathway. BK stimulation of normal cells leads to activation of PKC and, by consequence, to attenuation of the level of PLCc-generated DG and to stimulation of the PLD pathway, whereas the reverse occurs in PKC-down-regulated cells.  相似文献   

19.
In order to acquire an understanding of phospholipase C-delta3 (PLC-delta3) action on substrate localized in lipid membrane we have studied the binding of human recombinant PLC-delta3 to large, unilamellar phospholipid vesicles (LUVs). PLC-delta3 bound weakly to vesicles composed of phosphatidylcholine (PtdCho) or PtdCho plus phosphatidylethanolamine (PtdEtn) or phosphatidylinositol (PtdIns). The enzyme bound strongly to LUVs composed of PtdEtn + PtdCho and phosphatidylinositol 4,5-bisphosphate (PtdInsP2). The binding affinity (molar partition coefficient) of PLC-delta3 to PtdEtn + PtdCho + PtdInsP2 vesicles was 7.7 x 105 m-1. High binding of PLC-delta3 was also observed for LUVs composed of phosphatidic acid (PA). Binding of PLC-delta3 to phosphatidylserine (PtdSer) vesicles was less efficient. Calculated molar partition coefficient for binding of PLC-delta3 to PA and PtdSer vesicles was 1.6 x 104 m-1 and 9.4 x 102 m-1, respectively. Presence of PA in the LUVs containing PtdInsP2 considerably enhanced the binding of PLC-delta3 to the phospholipid membrane. Binding of PLC-delta3 to phospholipid vesicles was not dependent on Ca2+ presence. In the liposome assay PA caused a concentration-dependent increase in activity of PLC-delta3. The stimulatory effect of PA on PLC-delta3 was calcium-dependent. At Ca2+ concentrations lower than 1 microm, no effect of PA on the activity of PLC-delta3 was observed. PA enhanced PLC-delta3 activity by increasing the Vmax and lowering Km for PtdInsP2. As the mol fraction of PA increased from 0-40 mol% the enzyme Vmax increased 2.3-fold and Km decreased threefold. Based on the results presented, we assume that PA supports binding of PLC-delta3 to lipid membranes by interaction with the PH domain of the enzyme. The stimulatory effect of PA depends on calcium-dependent interaction with the C2 domain of PLC-delta3. We propose that binding of PLC-delta3 to PA may serve as a mechanism for dynamic membrane association and modulation of PLC-delta3 activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号