首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which expression patterns could not be accounted for using the three parasite states--genes that may play a mechanistic role in switching from the tachyzoite to bradyzoite stage.  相似文献   

3.
4.
The ability of Toxoplasma gondii to cycle between the tachyzoite and bradyzoite life stages in intermediate hosts is key to parasite survival and the pathogenesis of toxoplasmosis. Studies from a number of laboratories indicate that differentiation in T. gondii is a stress-induced phenomenon. The signalling pathways or molecular mechanisms that control formation of the latent bradyzoite stage are unknown and specific effectors of differentiation have not been identified. We engineered a reporter parasite to facilitate simultaneous comparison of differentiation and replication after various treatments. Chloramphenicol acetyltransferase (CAT), expressed constitutively from the alpha-tubulin promoter (TUB1), was used to quantitate parasite number. beta-galactosidase (beta-GAL), expressed from a bradyzoite specific promoter (BAG1), was used as a measure of bradyzoite gene expression. Sodium nitroprusside, a well-known inducer of bradyzoite differentiation, reduced reporter parasite replication and caused bradyzoite differentiation. Stress-induced differentiation in many other pathogens is regulated by cyclic nucleotide kinases. Specific inhibitors of the cAMP dependent protein kinase and apicomplexan cGMP dependent protein kinase inhibited replication and induced differentiation. The beta-GAL/CAT reporter parasite provides a method to quantify and compare agents that cause differentiation in T. gondii.  相似文献   

5.
Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission.  相似文献   

6.
7.
Parasite differentiation is commonly associated with transitions between complex life cycle stages and with long-term persistence in the host, and it is therefore critical for pathogenesis. In the protozoan parasite Toxoplasma gondii, interconversion between rapidly growing tachyzoites and latent encysted bradyzoites is accompanied by numerous morphological and metabolic adaptations. In order to explore early cell biological events associated with this differentiation process, we have exploited fluorescent reporter proteins targeted to various subcellular locations. Combining these markers with efficient in vitro differentiation and time-lapse video microscopy provides a dynamic view of bradyzoite development in living cultures, demonstrating subcellular reorganization, maintenance of the mitochondrion, and missegregation of the apicoplast. Bradyzoites divide asynchronously, using both endodyogeny and endopolygeny, and are highly motile both within and between host cells. Cysts are able to proliferate without passing through an intermediate tachyzoite stage, via both the migration of free bradyzoites and the fission of bradyzoite cysts, suggesting a mechanism for dissemination during chronic infection.  相似文献   

8.
In Toxoplasma gondii, lactate dehydrogenase is encoded by two independent and developmentally regulated genes LDH1 and LDH2. These genes and their products have been implicated in the control of a metabolic flux during parasite differentiation. To investigate the significance of LDH1 and LDH2 in this process, we generated stable transgenic parasite lines in which the expression of these two expressed isoforms of lactate dehydrogenase was knocked down in a stage-specific manner. These LDH knockdown parasites exhibited variable growth rates in either the tachyzoite or the bradyzoite stage, as compared with the parental parasites. Their differentiation processes were impaired when the parasites were grown under in vitro conditions. In vivo studies in a murine model system revealed that tachyzoites of these parasite lines were unable to form significant numbers of tissue cysts and to establish a chronic infection. Most importantly, all mice that were initially infected with tachyzoites of either of the four LDH knockdown lines survived a subsequent challenge with tachyzoites of the parental parasites (10(4)), a dose that usually causes 100% mortality, suggesting that live vaccination of mice with the LDH knockdown tachyzoites can confer protection against T. gondii. Thus, we conclude that LDH expression is essential for parasite differentiation. The knockdown of LDH1 and LDH2 expression gave rise to virulence-attenuated parasites that were unable to exhibit a significant brain cyst burden in a murine model of chronic infection.  相似文献   

9.
An important event in the pathogenesis of toxoplasmosis is the interconversion between the bradyzoite and the tachyzoite stage of Toxoplasma gondii within the intermediate host. The factors that influence either cyst formation (bradyzoites) or reactivation (tachyzoites) are unknown. Uwe Gross, Wolfgang Bohne, Martine Soête and Jean Fran?ois Dubremetz here describe current knowledge about the mechanisms that might lead to the induction of stage differentiation of this protozoan parasite.  相似文献   

10.
11.
Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis -elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii , we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis -acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6–8 bp resolution and these minimal cis -elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis -elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a 'poised' chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation.  相似文献   

12.
13.
We have previously shown that treatment of Neospora caninum tachyzoites with the aspartyl protease inhibitor pepstatin A reduces host cell invasion [Naguleswaran, A., Muller, N., Hemphill, A., 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Exp. Parasitol. 104, 149-158]. Pepstatin A-affinity-chromatography led to the isolation of a major band of approximately 52 kDa which was identified as a homologue of a previously described Toxoplasma gondii putative protein disulfide isomerase (TgPDI) through tandem mass spectrometry. A BLAST search against N. caninum expressed sequence tags (ESTs) on the ApiDots server using TgPDI cDNA as query sequence revealed a 2251 bp PDI-like consensus (NcPDI), which shows 94% identity to the T. gondii homologue. In N. caninum tachyzoites, NcPDI was found mainly in the soluble hydrophilic fraction. Immunofluorescence showed that expression of NcPDI was dramatically down-regulated in the bradyzoite stage, and immunogold-EM on tachyzoites localised the protein to the cytoplasm, mostly in close vicinity to the nuclear membrane, to the micronemes, and to the parasite cell surface. However, NcPDI was absent in rhoptries and dense granules. Preincubation of tachyzoites with the sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (pCMBA), and with the PDI inhibitor bacitracin reduced adhesion of parasites to host cells. In addition, incubation of N. caninum tachyzoites with affinity-purified anti-NcPDI antibodies reduced host cell adhesion. PDIs catalyse the formation, reduction or isomerisation of disulfide bonds. Many major components of the adhesion and invasion machinery of apicomplexan parasites are cysteine-rich and dependent on correct folding via disulfide bond formation. Thus, our data points towards an important role for surface-associated NcPDI in Neospora-host cell interaction.  相似文献   

14.
The central nervous system (CNS) of the intermediate host plays a central role in the lifelong persistence of Toxoplasma gondii as well as in the pathogenesis of congenital toxoplasmosis and reactivated infection in immunocompromised patients. In order to analyze the parasite-host interaction within the CNS, the host cell invasion, the intracellular replication, and the stage conversion from tachyzoites to bradyzoites was investigated in mixed cultures of dissociated CNS cells from cortices of Wistar rat embryos. Two days post infection (p.i.) with T. gondii tachyzoites, intracellular parasites were detected within neurons, astrocytes, and microglial cells as assessed by double immunofluorescence and confocal microscopy. Quantitative analyses revealed that approximately 10% of neurons and astrocytes were infected with T. gondii, while 30% of the microglial cells harbored intracellular parasites. However, the replication of T. gondii within microglial cells was considerably diminished, since 93% of the parasitophorous vacuoles (PV) contained only one to two parasites which often appeared degenerated. This toxoplasmacidal activity was not abrogated after treatment with NO synthase inhibitors or neutralization of IFN-gamma production. In contrast, 30% of the PV in neurons and astrocytes harbored clearly proliferating parasites with at least four to eight parasites per vacuole. Four days p.i. with tachyzoites of T. gondii, bradyzoites were detected within neurons, astrocytes, and microglial cells of untreated cell cultures. However, the majority of bradyzoite-containing vacuoles were located in neurons. Spontaneous differentiation to the bradyzoite stage was not inhibited after addition of NO synthase inhibitors or neutralization of IFN-gamma. In conclusion, our results indicate that intracerebral replication of T. gondii as well as spontaneous conversion from the tachyzoite to the bradyzoite stage is sustained predominantly by neurons and astrocytes, whereas microglial cells may effectively inhibit parasitic growth within the CNS.  相似文献   

15.
The expression and distribution of dense granule proteins in the enteric (coccidian) forms of Toxoplasma gondii in the small intestine of the cat. Experimental Parasitology 91, 203-211. The expression and location of the dense granule proteins (GRA1-6 and NTPase) in the merozoite and during asexual and sexual development of Toxoplasma gondii in the small intestine of the cat (definitive host) was examined by immuno-light and electron microscopy. This was compared with that of tachyzoites and bradyzoites present in the intermediate host. It was found that the merozoite contained the characteristic apical organelles plus a few large dense granules. By immunocytochemistry, dense granules in merozoites were negative for GRA proteins 1 to 6 in contrast to both tachyzoites and bradyzoites in which dense granules were positive for all six proteins. The GRA proteins were associated with the parasitophorous vacuole (PV) during tachyzoite and bradyzoite development but were absent from the PV of the enteric stages. However, the merozoite dense granules were positive for NTPase, which was similar to the tachyzoite while this antigen was down regulated in the bradyzoite. The apparent release of the NTPases into the PV formed by merozoites was also similar to that described for the tachyzoite, possibly reflecting the relative metabolic activity of the various stages. This study shows that the majority of GRA proteins have a similar stage-specific expression, which is independent of NTPases expression. These observations are consistent with T. gondii having a different host parasite relationship in the enteric forms, which does not involve the GRA proteins 1-6.  相似文献   

16.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

17.
18.
19.
20.
The apicomplexan parasite Toxoplasma gondii has the ability to switch between a rapidly replicating tachyzoite and a slowly dividing encysted bradyzoite within its intermediate hosts such as humans or other warm-blooded vertebrates. It is likely that in vivo, the tachyzoites differentiate into encysted bradyzoites in response to the immune system attack during disease progression. As part of a developmental strategy and, in order to survive within infected hosts, T. gondii tachyzoites undergo profound metabolic and morphological changes by differentiating into encysted bradyzoites. Bradyzoites are characterised by their resistance to both the immune system and chemotherapy. The stimulus that triggers Toxoplasma encystation and the molecular mechanisms triggering the switch from tachyzoite to bradyzoite remain unknown. It is very important to elucidate these mechanisms since bradyzoites within tissue cysts are not only the source of infection transmitted from domestic animals to humans, but can also be converted into tachyzoites that are the cause of fatal toxoplasmic encephalitis in acquired immunodeficiency syndrome patients. In this review, I focus on recent efforts towards the characterisation of genes that encode several stage-specific isoenzymes. The picture emerging from these studies is that stage-specific expression of isoenyzmes having different biochemical properties accompanies the interconversion of tachyzoite into bradyzoite, and vice versa. It can be hypothesised that the difference found between these enzymatic activities may be instrumental in maintaining some major parasitic metabolisms such as glycolysis in pace with the stage-specific requirements of carbohydrate or polysaccharide biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号