首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic conditions reversibly inhibit the elongation of isolated green pea (Pisum sativum L. var Alaska) stem segments. Illumination of segments maintained under anoxia causes a resumption of growth. Polarographic studies show pea stem segments are photosynthetically competent as determined by O2 evolution. Although O2 production is totally inhibited by dichlorophenyldimethylurea (DCMU) and dinitrophenol (DNP) inhibits O2-dependent growth, neither DCMU nor DNP completely abolishes light-dependent growth, although both reduce the effect markedly. Phenazine methosulfate promotes the growth of anaerobically maintained, illuminated, DCMU-treated segments. The data indicate that the principal effect of light in inducing growth under anaerobic conditions is the photosynthetic provision of O2 for respiration. There is also some evidence that, at least in the absence of O2, a small amount of elongation is due to some other light-driven process, perhaps cyclic photophosphorylation.  相似文献   

2.
The movement of IAA-14C through coleoptile segments of Avena and Zea has been investigated under aerobic and anaerobic conditions. The results are as follows: Zea. Using a 5-mm segment and a 2-hour transport period anaerobic conditions reduced the total uptake of 14C from an apical donor by 74% and the proportion of the total found in the receiving block by at least 45%. Anaerobic conditions reduced total uptake from a basal donor by 58% but no 14C reached the apical receiving block in either air or N2. Uptake from apical and basal donor blocks in N2 is closely similar.

The presence of 14C in the basal receiving blocks, and its absence in the apical receiving blocks, in N2 suggests that even in anaerobic conditions movement of IAA is polarized basipetally, although the movement occurs at only a fraction of the rate found in air.

Anaerobic conditions induced a similar reduction in basipetal movement of IAA in upper and lower 5-mm segments taken from the apical 10 mm of a Zea coleoptile.

Using 10-mm Zea segments no 14C was recovered in the receiving blocks at the basal end of the segment after 2 and 4 hours in N2 whereas large amounts were recovered in air.

Avena: Using 5-mm segments and a 2-hour transport period the total uptake of 14C from an apical donor is reduced by 83%. Movement of 14C into the basal donor is totally inhibited in N2. Total uptake of 14C from a basal donor is reduced by 61% in nitrogen and no 14C reached the apical receiving blocks regardless of the atmospheric conditions.

A time course for the movement of 14C into the basal and apical receiving blocks through 5-mm segments showed that in air the amount in the basal receivers increased for 4 hours and then remained approximately uniform. In N2 no significant 14C reached the receivers until 6 to 8 hours after the application of donors but even then the amounts were about 12 to 14% of that in aerobic receivers. Movement of 14C into apical receivers was similar in air and in nitrogen and even after 6 to 8 hours the amount of radioactivity barely reached significant levels.

  相似文献   

3.
Root formation in the etiolated pea stem sections and inhibition of this process is described in the present paper. Sodium fluoride, iodoacetic acid, norvaline, phenylserine, 5-bromuracil and 2-thiouracil did not inhibit the root formation completely. Complete inhibition, however, was observed after treatment of pea stem sections by kinetin, ethionine and chloramphenicol (5 X 10-5 M, 1 x 10-2 M, and 1 x 10-2 16 hours after sectioning). The concentration of kinetin which produced complete inhibition of root formation simultaneously stimulated the growth of the lateral buds. Root formation under the conditions described below can be divided into two stages. The first stage 64 hours from the beginning of the experiment, the second stage 64 hours later. Further, the first stage includes the formation of the meristematic cells in the pericycle areas. In the second stage are included the growth of roots and differentiation of root-tissues. Roots were formed, first of all, in the short vertical region of the sections near to the basal buds. Secondary xylem formation was also observed during the cultivation of the sections. This process was stimulated by kinetin.  相似文献   

4.
The ability of green pea (Pisum sativum var. Alaska) stem sections to elongate in response to H+ has been reinvestigated. Contrary to the conclusions of Barkley and Leopold, (Plant Physiol. 1973. 52: 76-78) these sections elongate in response to H+ whenever H+ entry through the cuticle is facilitated by slits, holes, or removal. Both live and frozen-thawed sections can undergo acid-induced elongation. Green pea stems behave as predicted by the acid-growth theory.  相似文献   

5.
The catabolism of specifically14C-labelled glucose during the root formation and its inhibition by kinetin and ethionine in the etiolated pea stem sections were studied. The formation of root meristematic foci in the pericycle region of sections was accompanied by the decrease of the C6/C1 ratio. Such a result and activation of pentose phosphate cycle, which was also checked by another method, suggested increased participation of pentose phosphate cycle in glucose oxidation. The above mentioned changes were also found after the prevention of root formation by ethionine and, therefore, do not seem to be specific for the meristematic foci formation. The growth of newly formed roots was closely connected with the rise of C6/C1 values. The increase of CO2 release from the first carbon atom of glucose molecule was recorded after the inhibition of root formation by ethionine. The rise of C6/C1 values and decrease of pentose phosphate cycle activity was observed after the treatment of pea stem sections by kinetin in the first 64 hours after sectioning. In this case root formation was prevented and the growth of lateral buds was stimulated. The secondary xylem formation which took place later was accompanied by the activation of the pentose phosphate cycle. These phenomena are discussed in relation to cell division and biosynthesis of lignin-precursors.  相似文献   

6.
Reversibility of chilling injury to corn seedlings   总被引:7,自引:4,他引:3       下载免费PDF全文
Seedlings of corn (Zea mays) were tested for recovery from chilling injury incurred at 0.3 ± 0.3 C. At 0.3 C visual leaf injury appeared in 36 hours, whereas stem and root injuries appeared later. Appearance of leaf injury was preceded by a rise in O2 uptake and a lessened effect of 2,4-dinitrophenol on O2 uptake by leaf segments and was accompanied by increased ion leakage from the leaves. These effects were reversible, in that transfer of seedlings to 21 C after 36 hours at 0.3 C produced a return of O2 uptake, 2,4-dinitrophenol stimulation, and ion leakage to the levels of unchilled leaves, as well as a disappearance of leaf symptoms, within 72 hours. For most seedlings, transfer to 21 C after 48 to 60 hours at 0.3 C reversed the chilling effects on O2 uptake, 2,4-dinitrophenol stimulation, and injury symptoms but not on ion leakage within 108 hours. However, some seedlings collapsed during 48 to 60 hours of chilling, and these never recovered. Transfer to 21 C after 72 hours at 0.3 C did not produce recovery from any symptom of chilling injury examined, and these seedlings soon died. No growth occurred at 0.3 C, but growth began soon after transfer to 21 C. Seedlings chilled 24 or 36 hours grew at reduced rates during the first 72 hours at 21 C, but within 96 hours at 21 C were growing at the same rate as nonchilled seedlings. These results demonstrate considerable capacity of growing plants to recover from short chilling treatments even though significant physiological changes occurred at low temperatures.  相似文献   

7.
On ethylene and stem elongation in green pea seedlings   总被引:1,自引:0,他引:1       下载免费PDF全文
Koch BL  Moore TC 《Plant physiology》1990,93(4):1663-1664
Maximum elongation of excised internodal stem sections of light-grown pea (Pisum sativum L.) seedlings occurred at 10−5 molar indoleacetic acid (IAA), with submaximal responses occurring at 10−4 and 10−3 molar. Accompanying elongation at concentrations of IAA of 10−6 to 10−3 molar was production of ethylene, with the amount increasing up to 10−4 molar IAA and then becoming nearly constant. Elongation of light-grown sections was not inhibited by exogenous ethylene up to 10,000 ppm in the presence of 10−5 molar IAA. Marked (up to 50%) inhibition of elongation of internodal segments in situ was observed after treating whole light-grown seedlings with exogenous ethylene for 20 hours. It is concluded that ethylene is not responsible for the submaximal elongation responses of green pea stem sections at high auxin concentrations, but that IAA per se is accountable.  相似文献   

8.
The effect of auxin indole-3-acetic acid (IAA) on growth and in vivo extensibility of third internode sections from red light grown pea seedlings (Pisum sativum L. cv Alaska) and the isolated tissues (cortex plus vascular tissue = cortical cylinder, and epidermis) was investigated. Living tissue was stretched at constant force (creep test) in a custom-built extensiometer. In the intact section, IAA-induced increase in total (Etot), elastic (Eel), and plastic (Epl) extensibility is closely related to the growth rate. The extensibility of the cortical cylinder, measured immediately after peeling of intact sections incubated for 4 hours in IAA, is not increased by IAA. Epidermal strips, peeled from growing sections incubated in IAA, show a Epl increase, which is correlated to the growth rate of the intact segments. The isolated cortical cylinder expands in water; IAA has only a small growth-promoting effect. The extensibility of the cortical cylinder is not increased by IAA. Epidermal strips contract about 10% on isolation. When incubated in IAA, they do not elongate, but respond with an Epl increase. The amount of expansion of the cortical cylinder and contraction of the epidermis (tissue tension), measured immediately following excision and peeling, stays constant during IAA-induced growth of intact sections. The results support the hypothesis that IAA induces growth of the intact section by causing an Epl increase of the outer epidermal wall. The driving force comes from the expansion of the cortical cylinder which is under constant compression in the intact section.  相似文献   

9.
Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO2 exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO2 concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO2 concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO2 concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO2 concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO2; they responded to changes in CO2 concentration in the range from 100 to 1000 microliters per liter.  相似文献   

10.
Gibberellic acid (GA3) induces invertase activity within 6 hours in Avena stem segments that are incubated in the dark at 23°. The maximum amount of promotion is about 5 times that of invertase activity in untreated segments. GA3 causes significant promotion of invertase activity at concentrations as low as 3 × 10−5 μm GA3. The increase in invertase activity elicited by GA3 between 3 × 10−5 μm and 300 μm closely parallels the growth promotion that is caused by GA3 over this concentration range. In control segments, invertase activity rises steeply during the first 6 hours of incubation, then decays slowly between 12 and 48 hours. In GA3-treated segments, the invertase activity also rises during the first 6 hours, parallel to that in control segments and continues to rise during the next 42 hours. These changes in invertase activity during 48-hour incubation periods do not parallel the changes in growth that occur in control and GA3-treated segments. Cycloheximide at 10 μg/ml abolishes all GA3-promoted growth and invertase activity in these segments. Actinomycin D at 40 and 80 μg/ml decreases GA3-promoted growth by 20% and invertase activity by 38 and 44%, respectively. The data clearly support the idea that protein synthesis is necessary for GA3-promoted growth and invertase activity in Avena stem segments.  相似文献   

11.
A Mung Bean Assay for Malformin-induced Growth Stimulation   总被引:2,自引:2,他引:0       下载免费PDF全文
Curtis RW 《Plant physiology》1976,57(3):365-368
A bioassay employing green or etiolated cuttings of Phaseolus aureus Roxb. was developed for determining malformin-induced growth stimulation in light. Growth enhancement of green cuttings was more rapid and relatively greater than that of etiolated cuttings. Cuttings from green seedlings responded less as seedlings aged; those from etiolated seedlings responded more. Malformin also stimulated the growth of green or etiolated seedlings in light. Most growth enhancement induced by malformin occurred in the upper 1 cm of the stem. Using green cuttings, malformin stimulated stem elongation relatively more when cotyledons, leaves, or especially apical buds were removed. Although malformin failed to stimulate elongation of 2-cm stem sections “floated” on solutions in Petri dishes, it stimulated elongation of sections when they were upright. High concentrations of indoleacetic acid inhibited growth enhancement by malformin. When gibberellin and malformin were combined, growth enhancement was nearly additive.  相似文献   

12.
W. Zimmer  K. Roeben  H. Bothe 《Planta》1988,176(3):333-342
Experiments were performed to identify the substances that are excreted by the soil bacterium Azospirillum brasilense Sp7 and that were reported to stimulate the formation of lateral roots and of root hairs of grasses. Azospirillum forms indole-3 acetic acid (IAA) but only in the late stationary growth phase or when tryptophan is present in the medium, but not in continuous cultures or in the logarithmic growth phase of batch cultures. Formation of IAA by Azospirillum requires aerobic conditions. Nitrite can replace IAA in several phytohormone assay, and is even more active than IAA in a test with wheat root segments in which the increase of wet weight is determined. Higher amounts of nitrite are necessary for activity in other classical auxin assays. Nitrite shows 40–60% of the activity of IAA in the straight-growth test of Avena coleoptiles and in the formation of C2H4 by pea epicotyl segments. Like IAA, nitrite is inactive in promoting C2H4 formation by ripe apple tissues. Since nitrite alone can hardly exert phytohormonal effects, it is postulated that nitrite reacts with a substance in the cells and that a product formed by this reaction functions as auxin. Such a substance could be ascorbate. Exogenously added ascorbate enhances the rate of nitrite-dependent C2H4 formation by pea epicotyl sections and the nitrite-dependent increase in the wet weight of wheat root segments. Nitrite is formed by nitrate respiration of Azospirillum. The findings that nitrite can have phytohormonal effects offers an alternative explanation of the promotion of the growth of roots and the enhancement of mineral uptake of grasses by Azospirillum. Indole-acetic acid completely and nitrite partly substitute for an inoculation with Azospirillum in an assay where the increase of the dry weight of intact wheat roots is determined after an incubation for 10 d. Nitrite and IAA are, therefore, possibly the only factors causing an enhancement of the growth of roots of grasses.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid  相似文献   

13.
Restoration of oxygenated conditions following 15 minutes to 2 hours of anoxia causes light-grown pea (Pisum sativum L. var. Alaska) stem segments to elongate 100 to 200% more than continuously aerated segments. This "emergent growth" response takes place in the presence of 5 mm F(-), an inhibitor of anaerobic respiration; therefore, a build-up of glycolytic products does not appear to be the mechanism underlying emergent growth. "Acid growth" does not appear to account directly for the hyperelongation, as extracellular pH does not drop following a return to aerobic conditions. Studies with (14)C-indoleacetic acid indicate that auxin is freed from some previously unavailable pool during O(2)-limited treatments. We suggest, therefore, that emergent growth is a response to auxin which is released during anaerobiosis: the newly mobile or diffusible auxin promoting growth when O(2) is no longer limiting.  相似文献   

14.
Promotion of cell wall synthesis (from glucose) in pea (Pisum sativum) stem segments by indoleacetic acid (IAA) develops over a period of 1 to 2 hours and is comprised of a promotion of glucose uptake plus a promotion of the utilization of absorbed glucose. The effect of IAA resembles, in these and other respects, its effect on cell wall synthesis in oat coleoptile segments, but the pea system differs in not being inhibited by galactose or mannose, in involving considerably more isotope dilution by endogenous substrates, and in certain other respects.  相似文献   

15.
Cohen E  Kende H 《Plant physiology》1987,84(2):282-286
Inasmuch as the activity of 1-aminocyclopropane-1-carboxylate (ACC) synthase cannot be measured in homogenates of deepwater rice internodes (Oryza sativa L.), we have employed an in vivo assay to determine the activity of this enzyme. This assay is based on the accumulation of ACC in tissue kept under N2. Submergence of whole plants or stem sections containing the uppermost, developing internode enhances the in vivo activity of ACC synthase in the stem. This stimulation of in vivo ACC-synthase activity is especially pronounced in the region of the internode containing the intercalary meristem and the elongation zone above it. Enhancement of in vivo ACC-synthase activity is evident after 2 hours of submergence and shows a peak after 4 hours. Reduced levels of atmospheric O2, which promote ethylene synthesis and growth in internodes of deepwater rice, also enhance the in vivo activity of ACC synthase. Our results are consistent with the hypothesis that induction of ACC-synthase activity at low partial O2 pressures is among the first biochemical events leading to internodal growth in deepwater rice.  相似文献   

16.
Wilkins MB  Whyte P 《Plant physiology》1968,43(9):1435-1442
The lateral movement of IAA in coleoptiles of Zea mays has been investigated under aerobic and anaerobic conditions. The IAA-1-14C was supplied asymmetrically to the apical end of the segment. The results were as follows: A) In air more 14C was found in the lower half of horizontal segments supplied with an upper donor than in the half opposite the donor in vertical segments. The enhanced lateral movement of 14C in geotropically stimulated segments of corn coleoptiles under aerobic conditions has thus been confirmed. B) This increased lateral movement of 14C in geotropically stimulated segments is greatly reduced, but is not completely abolished, under anaerobic conditions. C) The lateral movement of 14C in vertical segments is significantly less under anaerobic conditions than in air. D) Under anaerobic conditions, the lateral movement of 14C in horizontal segments can be reduced to the level found in vertical segments by pre-soaking the tissue in a 1 mm solution of the metabolic inhibitor sodium fluoride for 2 hours. The inhibitor has no effect on lateral movement of 14C in vertical anaerobic segments. E) In air, sodium fluoride has no effect on the lateral movement of 14C in either vertical or horizontal segments.  相似文献   

17.
Water relations of growing segments of maize (Zea mays L.) coleoptiles were investigated with osmotic methods using either mannitol (MAN) or polyethylene glycol 6000 (PEG) as external osmotica. Segments were incubated in MAN or PEG solutions at 0 to - 15 bar water potential (Ψo) and the effects were compared on elongation growth, osmotic shrinkage, cell sap osmolality (OC), and osmotic pressure (πi). The nonpenetrating osmoticum PEG affects πi in agreement with Boyle-Mariotte's law, i.e. the segments behave in principle as ideal osmometers. There is no osmotic adjustment in the Ψo range permitting growth (0 to −5 bar) nor in the Ψo range inducing osmotic shrinkage (−5 to −10 bar). Promoting growth by auxin (IAA) has no effect on the osmotic behavior of the tissue toward PEG. In contrast to PEG, MAN produces an apparent increase in πi accompanied by anomalous effects on segment elongation and shrinkage leading to a lower value for Ψo which establishes a growth rate of zero and to an apparent recovery from osmotic shrinkage after 2 hours of incubation. These effects can be quantitatively attributed to uptake of MAN into the tissue. MAN is taken up into the apoplastic space and the symplast as revealed by a large temperature-dependent component of MAN uptake. It is concluded that MAN, in contrast to PEG, is unsuitable as an extemal osmoticum for the quantitative determination of water relations of growing maize coleoptiles.  相似文献   

18.
The growth of lateral buds (tillers), which are undergoing release from apical dominance, was measured in upright and gravistimulated intact Avena sativa L. cv. `Victory' (oat) shoots as well as in isolated Avena stem segments treated with kinetin and sucrose. During release, the tiller bud initially shows a slow rate of elongation accompanied by swelling. It is followed by a more rapid rate of elongation. Ethylene (C2H4) production in shoot segments containing a tiller bud was found to occur at the onset of tiller swelling during gravistimulation as well as during inflorescence emergence. Exogenous application of indoleacetic acid or C2H4 inhibits kinetin-induced tiller bud swelling and elongation. However, stem segments pulsed for 24 hours in C2H4 or the C2H4 biosynthesis precursor, 1-amino-cyclopropane-1-carboxylic acid (ACC) and then transferred to kinetin and sucrose, showed a significant increase in swelling elongation as compared with segments maintained under the same conditions but without C2H4 or ACC in the pulse. Segments pulsed for 24 hours with kinetin and sucrose plus the ACC biosynthesis inhibitor, aminoethoxyvinylglycine, or the C2H4 action inhibitor, CO2, then transferred to kinetin and sucrose medium, showed inhibition of tiller swelling during the pulse and of subsequent elongation. These results indicate that C2H4 plays a role in promoting tiller swelling during the onset of tiller release from apical dominance and may act as a modulator hormone in promoting tiller elongation in the presence of cytokinin.  相似文献   

19.
Gibberellic acid was found to cause elongation in Avena sativa (oat) stem segments whether it was applied continuously or as a short pulse. The shorter the pulse time became, the higher was the gibberellic acid concentration needed to cause elongation; the segmental growth apparently depends upon the amount of gibberellic acid taken up by the segments. Avena segments showed a decreased growth response to gibberellic acid if the treatments were initiated at increasingly later times after excision from the plant. This decreased responsiveness to gibberellic acid was inhibited by low temperature (0-4 C), but accelerated by anaerobiosis. On the other hand, growth stimulation by a gibberellic acid pulse at the start of incubation was not altered by cold treatment but was nullified by a nitrogen atmosphere. Both the readiness of the segments for growth stimulation by gibberellic acid and its action in promoting growth clearly involve temperature-dependent, aerobic metabolism.  相似文献   

20.
Catechol-2,3-dioxygenase (C23O) of Pseudomonas putida, encoded by the xylE gene, was found to be sensitive to hydrogen peroxide (H2O2) when used as a reporter in gene fusion constructs. Exposure of Pseudomonas aeruginosa katA or katA katB mutants harboring katA- or katB-lacZ (encoding β-galactosidase) or -xylE fusion plasmids to H2O2 stimulated β-galactosidase activity, while there was little or no detectable C23O activity in these strains. More than 95% of C23O activity was lost after a 5-min exposure to equimolar H2O2, while a 10,000-fold excess was required for similar inhibition of β-galactosidase. Electron paramagnetic resonance spectra of the nitrosyl complexes of C23O showed that H2O2 nearly stoichiometrically oxidized the essential active-site ferrous ion, thus accounting for the loss of activity. Our results suggest using caution in interpreting data derived from xylE reporter fusions under aerobic conditions, especially where oxidative stress is present or when catalase-deficient strains are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号