首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The rDNA content in Drosophila hydei has been compared in wild-type and in two translocation genotypes possessing only one nucleolus organizer. In highly polyploid salivary glands where rDNA is underreplicated, an independent polytenization of the rDNA occurs resulting in about the same rDNA level in each genotype independently of the number of nucleolous organizers present in the genome. Thus, the situation in the salivary glands of D. hydei is similar to that in D. melanogaster (Spear and Gall 1973).In tetraploid thoracic muscle where rDNA is not underreplicated, the rDNA percentage in the two translocation genotypes is also considerably increased, although the wild-type level is not completely attained. This result shows that rDNA replication is independently controlled even in a non-underreplicating tissue.In larval diploid brain the situation in the two translocation stocks is dissimilar: in one genotype the rDNA content remains unaltered whereas in the other it is increased. This demonstrates for the first time that a gene compensation does occur in a diploid tissue.Supported by a grant from the Deutsche Forschungsgemeinschaft (Ku 282/7)  相似文献   

2.
During the formation of polytene chromosomes in salivary glands of Drosophila hydei, the genes for ribosomal RNA (rDNA) are underreplicated relative to the rest of the genome. We have measured the number of rRNA genes with and without intervening sequences (ivs+ and ivs- genes) in polytene chromosomes of different genotypes. In the group of genotypes having a large number of ivs- rRNA genes polytenization only occurs within the cluster of ivs- genes. In each of these genotypes rDNA polytenization reaches a constant level of 150 ivs- genes per two chromatid sets (2C); X/X constitutions having two nucleolus organizers (NOs) in the diploid set polytenize the same amount of rDNA as X/O constitutions. In the group of genotypes with small ivs- gene numbers, the rDNA region involved in polytenization is longer and has an average length of 1,700 kb per NO, which is constant in these genotypes. Polytenization of rDNA is extended into the cluster of ivs+ genes, in spite of the fact that these genes appear to be nonfunctional. The smaller the number of ivs- genes, the greater the number of ivs+ genes that are polytenized in the NO. In these genotypes, X/X females replicate twice as much rDNA as X/O males, suggesting that both NOs of the diploid set are polytenized. A comparison of the pattern of spacer length heterogeneity in hybrids between different stocks also demonstrates that both NOs are replicated during polytenization.  相似文献   

3.
DNA from the "non-transcribed spacer" (NTS) of two wheat ribosomal RNA gene (rDNA) clones was sequenced. The regions flanking the internal subrepeat arrays are highly conserved between the two clones; the nucleotide sequence differ by less than one-half percent. In contrast, the consensus sequences of the subrepeats in the two arrays differ by three percent. Mutations unique to each array, yet found in more than one subrepeat of the array, are preferentially found in adjacent and alternate subrepeats. The similarity of the DNA sequences of the flanking regions is consistent with a model of homogenization among rDNA gene units by intergenic conversion. We propose that a different mechanism, preferential conversion between neighboring subrepeats, is largely responsible for the homogenization of subrepeats within an array.  相似文献   

4.
Restriction enzyme analysis of ribosomal DNA (rDNA) and chloroplast DNA (cpDNA) is used to assess the relative contribution of hybridization and mutation as sources of genotypic variation in weedy asexual dandelions, with focus on the dandelion flora of North America. Of 318 North American dandelions surveyed, 145 rDNA-cpDNA clones are detected. The combined rDNA-cpDNA genotypes show that most of the polymorphic rDNA and cpDNA restriction sites or lengths in these plants are also present in weedy asexual dandelions collected from natural populations in Europe and in asexual and diploid taxa (microspecies) chosen to represent diverse Eurasian members of the genus. However, of 222 combined rDNA-cpDNA genotypes found in 427 asexual plants surveyed, only 9 genotypes are found in both North American and Eurasian dandelions. Two rDNA and three cpDNA characters are unique to individual plants in North America and are consistent with mutational origins of genotypic variation in asexual lineages. But the array of genotypic diversity, characterized by different combinations of the rDNA and cpDNA characters, show that multiple hybridization events are a more important source of genotypic variation than mutation in the asexual polyploids. The rDNA and cpDNA data also indicate polyphyletic origin of several asexual Taraxacum taxa.  相似文献   

5.
Origin and rearrangement of ribosomal DNA repeats in natural allotetraploid Nicotiana tabacum are described. Comparative sequence analysis of the intergenic spacer (IGS) regions of Nicotiana tomentosiformis (the paternal diploid progenitor) and Nicotiana sylvestris (the maternal diploid progenitor) showed species-specific molecular features. These markers allowed us to trace the molecular evolution of parental rDNA in the allopolyploid genome of N. tabacum; at least the majority of tobacco rDNA repeats originated from N. tomentosiformis, which endured reconstruction of subrepeated regions in the IGS. We infer that after hybridization of the parental diploid species, rDNA with a longer IGS, donated by N. tomentosiformis, dominated over the rDNA with a shorter IGS from N. sylvestris; the latter was then eliminated from the allopolyploid genome. Thus, repeated sequences in allopolyploid genomes are targets for molecular rearrangement, demonstrating the dynamic nature of allopolyploid genomes.  相似文献   

6.
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.  相似文献   

7.
水环境细菌16S rNDA限制性片段长度多型性及群落结构分析   总被引:8,自引:0,他引:8  
用细菌16S核菌体RNA基因(rDNA)限制性片段长度多型性描述了水环境细菌群落结构。从环境水样中直接分离DNA,以细菌特异的引物扩增16S rDNA。构建质粒文库,随机分离重组质粒,用限制性内切酶消化获得16S rDNA基因型,用基因型的种类及频率描述特定水体生境的细菌群落结构,该方法在分析水体隐含遗传多样性、揭示污染的生物学效应和评价水环境质量等方面具有重要的应用价值。  相似文献   

8.
太湖地区典型菜地土壤微生物16S rDNA的PCR-RFLP分析   总被引:23,自引:1,他引:23  
土壤微生物多样性是土壤生态功能的基础,但长期以来缺乏对高强度土地利用条件下的土壤微生物多样性的认识.作者采用间接法提取了江苏省太湖地区典型菜地土壤微生物的总DNA,以细菌的通用引物27F和1492R扩增16S rDNA片段,将扩增产物与T-载体酶连,转化大肠杆菌,建立土壤微生物16S rDNA克隆文库.PCR扩增基因文库中插入的16S rDNA外源片段,用两种限制性内切酶Hha I和Rsa I分别酶切,获得该土壤173个克隆的酶切指纹图谱.结果表明,Hha I和Rsa I联合酶切产生了63个基因分型,文库的覆盖度达76.30%,单一酶切产生的基因分型少,但文库的覆盖度高;克隆文库中存在两种优势类群,分别占总克隆的16%和12%.16S rDNA测序结果表明,太湖地区菜地土壤细菌在分类方面主要属于α-和γ-变形杆菌亚门.以上结果为进一步研究太湖地区菜地土壤微生物生态功能提供了基础资料.  相似文献   

9.
Restriction site variation in the nuclear 18S–25S ribosomal RNA genes (rDNA) was analyzed hierarchically in a species complex in the fern genusPolystichum. Two distinct rDNA repeat types were present in all individuals ofPolystichum examined. No variation was detected among individuals within a population ofP. munitum, among populations ofP. munitum orP. imbricans, or among the six diploid species ofPolystichum from North America, including the circumborealP. lonchitis. The identity of rDNA repeats across all six North American species ofPolystichum may reflect an overall similarity of the nuclear genomes of these species, an observation supported by isozyme data as well. However, this nuclear similarity contrasts sharply with the highly divergent chloroplast genomes of these six species. The conservative nature of the rDNA inPolystichum also is in contrast to the much more variable rDNAs of most angiosperms investigated. Perhaps the tempo and mode of evolution of rDNA in ferns differ from those of angiosperms; however, the data base for fern rDNA is very small. Furthermore, the number of repeat types per individual is consistent with a diploid, rather than polyploid, condition despite the high chromosome number (n = 41) of these plants, although homogenization of multiple, divergent rRNA genes cannot be disproven.  相似文献   

10.
Inheritance of extrachromosomal rDNA in Physarum polycephalum.   总被引:2,自引:1,他引:1       下载免费PDF全文
In the acellular slime mold Physarum polycephalum, the several hundred genes coding for rRNA are located on linear extrachromosomal DNA molecules of a discrete size, 60 kilobases. Each molecule contains two genes that are arranged in a palindromic fashion and separated by a central spacer region. We investigated how rDNA is inherited after meiosis. Two Physarum amoebal strains, each with an rDNA recognizable by its restriction endonuclease cleavage pattern, were mated, the resulting diploid plasmodium was induced to sporulate, and haploid progeny clones were isolated from the germinated spores. The type of rDNA in each was analyzed by blotting hybridization, with cloned rDNA sequences used as probes. This analysis showed that rDNA was inherited in an all-or-nothing fashion; that is, progeny clones contained one or the other parental rDNA type, but not both. However, the rDNA did not segregate in a simple Mendelian way; one rDNA type was inherited more frequently than the other. The same rDNA type was also in excess in the diploid plasmodium before meiosis, and the relative proportions of the two rDNAs changed after continued plasmodial growth. The proportion of the two rDNA types in the population of progeny clones reflected the proportion in the parent plasmodium before meoisis. The rDNAs in many of the progeny clones contained specific deletions of some of the inverted repeat sequences at the central palindromic symmetry axis. To explain the pattern of inheritance of Physarum rDNA, we postulate that a single copy of rDNA is inserted into each spore or is selectively replicated after meiosis.  相似文献   

11.
Nicotiana tabacum (tobacco) is an allotetraploid derived from ancestors of the modern diploids, N. sylvestris and N. tomentosiformis. We identified and characterized two distinct families of 5S ribosomal DNA (rDNA) in N. tabacum; one family had an average 431 bp unit length and the other a 646 bp unit length. In the diploid species, N. sylvestris and N. tomentosiformis, the 5S rDNA unit lengths are 431 bp and 644 bp respectively. The non-coding spacer sequence of the short unit in tobacco had high sequence homology to the spacer of N. sylvestris5S rDNA, while the longer spacer of tobacco had high homology with the 5S spacer of N. tomentosiformis. This suggests that the two 5S families in tobacco have their origin in the diploid ancestors. The longer spacer sequence had a GC rich sub-region (called the T-genome sub-region) that was absent in the short spacer. Pulsed field gel analysis and fluorescent in situ hybridization to tobacco metaphase chromosomes showed that the two families of 5S rDNA units are spatially separate at two chromosomal loci, on chromosomes S8 (short family) and T8 (long family). The repeat copy number at each chromosomal locus showed heterogeneity between different tobacco cultivars, with a tendency for a decrease in the copy number of one family to be compensated by an increase in the copy number of the second family. Sequence analysis reveals there is as much diversity in 5S family units within the diploid species as there is within the T and S-genome 5S family units respectively, suggesting 5S diversification within each family had occurred before tobacco speciation. There is no evidence of interlocus homogenization of the two 5S families in tobacco. This is therefore substantially different to 18-26S rDNA where interlocus gene conversion has substantially influenced most sequences of S and T genome origin; possible reasons are discussed.  相似文献   

12.
The replication state of rDNA in testes nuclei undergoing polyploidization by classical-type endomitosis was investigated in Gerris najas (Heteroptera) by means of fluorescence in situ hybridization. The number of just one rDNA locus per haploid genome was determined by in situ hybridization on meiotic nuclei. Additionally, DNA measurements of spermatids and testes nuclei were performed. Although regular duplication levels of nuclear DNA were found within the limits of the accuracy of the method, these did evidently not apply to the ribosomal genes. The comparison of the number of rDNA signals with the DNA content of 106 testis nuclei revealed drastic variations of the number of rDNA loci between individual nuclei with similar DNA content. Polyploid nuclei of the testis epithelium showed too low numbers of rDNA loci in relation to those expected from the levels of ploidy, while cyst cell nuclei displayed increased numbers of rDNA loci. The results indicate that the ribosomal genes are either underreplicated, or in part eliminated, during the endomitotic cycles of epithelium cell nuclei, but amplified in the cyst cell nuclei, probably already at their diploid stage.  相似文献   

13.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,133(1):1-7
The genus Aegilops comprises approximately 25 diploid, tetraploid and hexaploid species, in which the genome types of all allopolyploids involve either U or D genome, or both of them. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (rDNA) from 11 allopolyploid species and 7 related diploid species in the genus were directly sequenced by pooled PCR products. Phylogenetic analyses for tracing evolutionary patterns of parental rDNA in allopolyploid species were performed using the neighbor-joining method. The D genome involved tree included three clades (CC-DDCC, DDMM-DDMMSS-DDMMUU, and MM-MhMh-DDNN), but did not include Ae. squarrosa (DD). It indicated that the rDNA of ancestral D genome had been somewhat differentiated in allopolyploids. The U genome involved tree showed that the allopolyploids and their common ancestor, Ae. umbellulata, formed a clade, suggesting that rDNA in UUMM and UUSS genomes has been homogenizing toward that of ancestral U genome. The phylogenetic pattern of U genome based on ITS sequences also supported the "pivotal-differential" hypothesis.  相似文献   

14.
Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed.  相似文献   

15.
Distribution of rDNA loci in the genus Glycine Willd.   总被引:2,自引:0,他引:2  
The objective of this study was to examine the distribution of rDNA loci in the genus Glycine Willd. by fluorescent in situ hybridization (FISH) using the internal transcribed spacer (ITS) region of nuclear ribosomal DNA as a probe. The hybridized rDNA probe produced two distinct yellow signals on reddish chromosomes representing two NORs in 16 diploid (2n=40) species. Aneudiploid (2n=38) and aneutetraploid (2n=78) Glycine tomentella Hayata also exhibited two rDNA sites. However, the probe hybridized with four chromosomes as evidenced by four signals in two diploid species (Glycine curvata Tind. and Glycine cyrtoloba Tind.) and tetraploid (2n=80) G. tabacina (Labill.) Benth. and G. tomentella. Synthesized amphiploids (2n=80) of Glycine canescens F. J. Herm. (2n=40) and the 40-chromosome G. tomentella also showed four signals. This study demonstrates that the distribution of the rDNA gene in the 16 Glycine species studied is highly conserved and that silence of the rDNA locus may be attributed to amphiplasty during diploidization and speciation. Received: 10 October 2000 / Accepted: 6 December 2000  相似文献   

16.
斜茎黄芪根瘤菌的16SrDNA和23SrDNAPCR—RFLP比较分析   总被引:5,自引:0,他引:5       下载免费PDF全文
在表型性状数值分析和AFLP指纹图谱分析的基础上,选取54株斜茎黄芪根瘤菌的代表菌株及已知根瘤菌参比菌株,进行16SrDNA和23SrDNA的PCR-RFLP比较分析。结果表明斜茎黄芪根瘤菌具有极大的系统发育多样性,分别具有24个16SrDNA遗传图谱类型和22个23SrDNA遗传图谱类型,16SrDNA与23SrDNAPCR-RFLP聚类分析树状图谱有较好的一致性,但也存在一些差异。在对较大类群的划分上,它们的结果与表型性状数值分析结果有较好的一致性。将16SrDNA和23SrDNAPCR-RFLP分析数据合并在一起进行分析时,得出26个综合遗传图谱类型和1个综合聚类分析树状图谱。很明显,16SrDNA与23SrDNA的合并,能够得出更可靠的系统发育结论。  相似文献   

17.
Xiao-Yan Zhu  De-Tian Cai  Yi Ding 《Génome》2008,51(5):332-340
We investigated the molecular characteristics and chromosomal organization of 5S rDNA in the genus Oryza, including diploid and tetraploid species. A phylogenetic tree of Oryza species was constructed based on the non-transcribed spacer sequences of 5S rDNA, and some novel relationships were discovered. Specifically, comparative sequence analysis of 5S rDNA in several wild rice species showed unique characteristics inconsistent with the model of concerted evolution: (1) multiple distinct 5S rDNA types were detected within a species, leading to intraspecific divergence of 5S rDNA; (2) multiple identical 5S rDNA types were shared among species, resulting in interspecies clustering of 5S rDNA types; and (3) intraspecific nucleotide diversity was detected within a 5S rDNA class. Our results obtained by fluorescence in situ hybridization revealed that each rice species studied contained only one 5S rDNA locus with two hybridization sites, which were located on either chromosome 7 or chromosome 11. These results suggest that different 5S rDNA classes within the rice genome were arranged together and that one pair of 5S rDNA loci from a diploid progenitor of the tetraploid species might have been lost during evolution. Taken together, our data show that 5S rDNA in rice species is more informative at the gene level than at the chromosome level.  相似文献   

18.
R J Snowdon  W K?hler  A K?hler 《Génome》1997,40(4):582-587
Using fluorescence in situ hybridization, we located ribosomal DNA loci on prometaphase chromosomes of the diploid species Brassica rapa and Brassica oleracea and their amphidiploid Brassica napus. Based on comparisons of chromosome morphology and hybridization patterns, we characterized the individual B. napus rDNA loci according to their presumed origins in the Brassica A and C genomes. As reported in other studies, the sum of rDNA loci observed on B. rapa (AA genome) and B. oleracea (CC genome) chromosomes was one greater than the total number of loci seen in their amphidiploid B. napus (AACC). Evidence is presented that this reduction in B. napus rDNA locus number results from the loss of the smallest A genome rDNA site in the amphidiploid.  相似文献   

19.
E Falistocco  V Passeri  G Marconi 《Génome》2007,50(10):927-938
Here we report the first results of a study of 5S rDNA of Vitis vinifera. 5S rDNA sequences from seven genotypes were amplified by PCR, cloned, and sequenced. Three types of repeats were found. Two variants, denominated long repeat and short repeat, appeared to be the main components of the 5S rDNA of this species, since they were found in all genotypes analyzed. They differed markedly from each other in both the length and the nucleotide composition of the spacers. The third variant, classified as DEL short repeat, differs from the short repeat owing to a large deletion in the spacer region. It appears to be the most recent repeat type, since it was identified in only one genotype. The organization of the 5S rDNA repeat unit variants was investigated by amplifying the genomic DNA with primers designed on the sequence of the long and short spacers. The PCR-amplified fragments showed that the long repeat is associated with the other two repeats, indicating that in V. vinifera different repeat units coexist within the same tandem array. FISH analysis demonstrated that 5S rRNA genes are localized at a single locus. The variability of 5S rDNA repeats is discussed in relation to the putative allopolyploid origin of V. vinifera.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号