首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokine regulation of endothelial cell function.   总被引:49,自引:0,他引:49  
Endothelial cells have long been viewed as a passive lining of blood vessels endowed essentially with negative properties such as that of being nonreactive to blood components. It is now evident that upon exposure to environmental signals, cytokines in particular, vascular cells undergo profound changes in gene expression and function that allow these cells to participate actively in inflammatory reactions, immunity, and thrombosis. Different mediators (e.g., interleukin-1 [IL-1] and interferon-gamma) activate relatively distinct sets of functions. These functional programs expressed in activated endothelial cells include the production by the same cells of cytokines (e.g., IL-1, IL-6, chemotactic cytokines, and colony-stimulating factors), which regulate hematopoiesis, the differentiation and proliferation of T and B lymphocytes, and the extravasation of leukocytes. The identification of cytokine circuits through which vascular cells participate to thrombotic, inflammatory, and immune reactions provides novel targets for therapeutic intervention.  相似文献   

2.
3.
Endothelial function and coronary artery disease   总被引:20,自引:0,他引:20  
The endothelium produces a number of vasodilator and vasoconstrictor substances that not only regulate vasomotor tone, but also the recruitment and activity of inflammatory cells and the propensity towards thrombosis. Endothelial vasomotor function is a convenient way to assess these other functions, and is related to the long-term risk of cardiovascular disease. Lipids (particularly low density lipoprotein cholesterol) and oxidant stress play a major role in impairing these functions, by reducing the bioavailability of nitric oxide and activating pro-inflammatory signalling pathways such as nuclear factor kappa B. Biomechanical forces on the endothelium, including low shear stress from disturbed blood flow, also activate the endothelium increasing vasomotor dysfunction and promoting inflammation by upregulating pro-atherogenic genes. In contrast, normal laminar shear stress promotes the expression of genes that may protect against atherosclerosis. The sub-cellular structure of endothelial cells includes caveolae that play an integral part in regulating the activity of endothelial nitric oxide synthase. Low density lipoprotein cholesterol and oxidant stress impair caveolae structure and function and adversely affect endothelial function. Lipid-independent pathways of endothelial cell activation are increasingly recognized, and may provide new therapeutic targets. Endothelial vasoconstrictors, such as endothelin, antagonize endothelium-derived vasodilators and contribute to endothelial dysfunction. Some but not all studies have linked certain genetic polymorphisms of the nitric oxide synthase enzyme to vascular disease and impaired endothelial function. Such genetic heterogeneity may nonetheless offer new insights into the variability of endothelial function.  相似文献   

4.
The regulation of vascular tone, vascular permeability, and thromboresistance is essential to maintain blood circulation and therefore tissue environments under physiological conditions. Atherogenic stimuli, including diabetes, dyslipidemia, and oxidative stress, induce vascular dysfunction, leading to atherosclerosis, which is a key pathological basis for cardiovascular diseases such as ischemic heart disease and stroke. We have proposed a novel concept termed "vascular failure" to comprehensively recognize the vascular dysfunction that contributes to the development of cardiovascular diseases. Vascular endothelial cells form the vascular endothelium as a monolayer that covers the vascular lumen and serves as an interface between circulating blood and immune cells. Endothelial cells regulate vascular function in collaboration with smooth muscle cells. Endothelial dysfunction under pathophysiological conditions contributes to the development of vascular dysfunction. Here, we address the barrier function and microtubule function of endothelial cells. Endothelial barrier function, mediated by cell-to-cell junctions between endothelial cells, is regulated by small GTPases and kinases. Microtubule function, regulated by the acetylation of tubulin, a component of the microtubules, is a target of atherogenic stimuli. The elucidation of the molecular mechanisms of endothelial dysfunction as a cellular mechanism for vascular failure could provide novel therapeutic targets of cardiovascular diseases.  相似文献   

5.
Atherosclerosis is an inflammatory process, triggered by the presence of lipids in the vascular wall, and encompasses a complex interaction among inflammatory cells, vascular elements, and lipoproteins through expression of several adhesion molecules and cytokines. Subendothelial retention of lipoproteins is the key initiating event in atherosclerosis, provoking a cascade of events to pathogenic response. High levels of plasma lipids, particularly low-density (LDL) and very-low-density lipoproteins (VLDL) are among the pathophysiologic stimuli that induce endothelial dysfunction. Endothelial cells regulate coagulation, thrombosis and the fibrinolytic system; the endothelium modulates the activity of smooth muscle cells (vascular tone/proliferation) and controls the traffic of macromolecules and inflammatory cells to the vessel wall. Furthermore, LDLs have been implicated in the induction of changes in permeability, cell adhesion and secretion of vasoactive molecules (nitric oxide [NO]), while VLDLs seem to modulate the fibrinolytic system [tissue plasminogen activator (TPA) and plasminogen activator inhibitor-1 (PAI-1)]. In this review, we will focus on the pathophysiologic functions of lipoproteins in the vascular wall.  相似文献   

6.
7.
Vascular endothelial cells play an important role in coagulation regulation of vascular tone and in a variety of synthetic and metabolic functions. Endothelial cells also have a pivotal role in immunological diseases atherogenesis and tumor angiogenesis. Endothelial cells are often used as system to study the pathophysiology of late complications in diabetes mellitus atherosclerotic damages and leukocyte adhesion in inflammatory diseases. Most of the studies have been performed on primary arterial and venous endothelial cell cultures with problems such as availability of autoptic material and reproducibility of cell cultures. We have isolated and characterized a novel system of proliferating long-term cultures of human aortic endothelial cells that maintain their differentiated characteristics for many generations in vitro. They produce antithrombotic and thrombotic factors such as t-PA and PAI-1 and respond to TNFalpha, an important factor correlated with the inflammatory process by modifying growth characteristics by producing cytokines such as GM-CSF by expressing ICAM-1 on the surface and by producing large amounts of nitric oxide and endothelin. This new system may be very useful to understand and study the molecular mechanisms involved in many vascular alteration pathologies and in the aging process.  相似文献   

8.
Endothelial cells are active participants in chronic inflammatory diseases. These cells undergo phenotypic changes that can be characterised as activated, angiogenic, apoptotic and leaky. In the present review, these phenotypes are described in the context of human rheumatoid arthritis as the disease example. Endothelial cells become activated in rheumatoid arthritis pathophysiology, expressing adhesion molecules and presenting chemokines, leading to leukocyte migration from the blood into the tissue. Endothelial cell permeability increases, leading to oedema formation and swelling of the joints. These cells proliferate as part of the angiogenic response and there is also a net increase in the turnover of endothelial cells since the number of apoptotic endothelial cells increases. The endothelium expresses various cytokines, cytokine receptors and proteases that are involved in angiogenesis, proliferation and tissue degradation. Associated with these mechanisms is a change in the spectrum of genes expressed, some of which are relatively endothelial specific and others are widely expressed by other cells in the synovium. Better knowledge of molecular and functional changes occurring in endothelial cells during chronic inflammation may lead to the development of endothelium-targeted therapies for rheumatoid arthritis and other chronic inflammatory diseases.  相似文献   

9.
Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease.  相似文献   

10.
Endothelial-to-mesenchymal transition has been described in tumors as a source of mesenchymal stroma, while the reverse process has been proposed in tumor vasculogenesis and angiogenesis. A human oncogenic virus, Kaposi’s sarcoma herpes virus (KSHV), can regulate both processes in order to transit through this transition ‘boulevard’ when infecting KS oncogenic progenitor cells. Endothelial or mesenchymal circulating progenitor cells can serve as KS oncogenic progenitors recruited by inflammatory cytokines because KSHV can reprogram one into the other through endothelial-to-mesenchymal and mesenchymal-to-endothelial transitions. Through these novel insights, the identity of the potential oncogenic progenitor of KS is revealed while gaining knowledge of the biology of the mesenchymal-endothelial differentiation axis and pointing to this axis as a therapeutic target in KS.  相似文献   

11.
Food-derived peptides and intestinal functions   总被引:1,自引:0,他引:1  
Many researchers have reported that food proteins and their peptides expressed a variety of functions in the body, including a reduction of blood pressure, modulation of immune cell functions, and regulation of nerve functions. However, food-derived proteins and peptides also play important roles in the intestinal tract before being absorbed. For example, some of the proteins and peptides can regulate the activity of digestive enzymes in the intestinal tract, thereby modulating the nutrient absorption in the intestines. These proteins and peptides have been used for functional foods with blood glucose- and blood cholesterol-lowering effects. Enhancement of the intestinal calcium absorption by casein-derived peptides is another example, such peptides being used as functional food ingredients. We have recently observed that certain milk peptides might stimulate the calcium transporter in intestinal epithelial cells. Carnosine, a dipeptide contained in skeletal muscles, was observed to suppress the secretion of inflammatory cytokines by intestinal epithelial cells that had been exposed to oxidative stress. Understanding the behavior of dietary proteins and peptides in the intestines is important for designing functional foods with physiological functions.  相似文献   

12.
内皮祖细胞(Endothelial progenitor cells,EPCs)是能够增殖、迁移、粘附并分化为血管内皮细胞潜能的一种原始细胞,在修复血管内皮和促进血管生成中具有重要的作用。EPC来源于骨髓,存在于骨髓、外周血、脐带血,新研究表明在脂肪组织、心肌中也能发现EPC的存在。EPC与干细胞的细胞表面标志物相似,功能上亦接近干细胞,但不具有自我更新的功能。近年来EPC已成为热点问题,对疾病诊断,预后判断和靶向治疗方面发挥重要作用,在冠状动脉粥样硬化性疾病、糖尿病血管病变、恶性肿瘤等治疗中全身或局部注射EPC具有更广泛的前景和应用价值。但关于分离培养EPC的方法及细胞表面标志物不完全相同,报道较少,至今尚没有形成统一的标准,本文就对于内皮祖细胞基本现状、分离培养技术、分选鉴定及临床应用方面做一综述。  相似文献   

13.
Within blood vessels, endothelial cell–cell and cell–matrix adhesions are crucial to preserve barrier function, and these adhesions are tightly controlled during vascular development, angiogenesis, and transendothelial migration of inflammatory cells. Endothelial cellular signaling that occurs via the family of Rho GTPases coordinates these cell adhesion structures through cytoskeletal remodelling. In turn, Rho GTPases are regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). To understand how endothelial cells initiate changes in the activity of Rho GTPases, and thereby regulate cell adhesion, we will discuss the role of Rho GAPs and GEFs in vascular biology. Many potentially important Rho regulators have not been studied in detail in endothelial cells. We therefore will first overview which GAPs and GEFs are highly expressed in endothelium, based on comparative gene expression analysis of human endothelial cells compared with other tissue cell types. Subsequently, we discuss the relevance of Rho GAPs and GEFs for endothelial cell adhesion in vascular homeostasis and disease.  相似文献   

14.
Endothelial dysfunction is a pathological status of the vascular system, which can be broadly defined as an imbalance between endothelium-dependent vasoconstriction and vasodilation. Endothelial dysfunction is a key event in the progression of many pathological processes including atherosclerosis, type II diabetes and hypertension. Previous reports have demonstrated that pro-inflammatory/immunoeffector cytokines significantly promote endothelial dysfunction while numerous novel anti-inflammatory/immunosuppressive cytokines have recently been identified such as interleukin (IL)-35. However, the effects of anti-inflammatory cytokines on endothelial dysfunction have received much less attention. In this analytical review, we focus on the recent progress attained in characterizing the direct and indirect effects of anti-inflammatory/immunosuppressive cytokines in the inhibition of endothelial dysfunction. Our analyses are not only limited to the importance of endothelial dysfunction in cardiovascular disease progression, but also expand into the molecular mechanisms and pathways underlying the inhibition of endothelial dysfunction by anti-inflammatory/immunosuppressive cytokines. Our review suggests that anti-inflammatory/immunosuppressive cytokines serve as novel therapeutic targets for inhibiting endothelial dysfunction, vascular inflammation and cardio- and cerebro-vascular diseases.  相似文献   

15.
The identification of a specific required carbohydrate structure for the antithrombin III binding site on heparin suggests that there may be specific structures in glycosaminoglycan chains which are necessary for other vascular functions of these carbohydrates. Determining that such differences exist requires a mechanism to isolate heparan sulfates from endothelial cells of specific vascular beds. The present report indicates that cultured venous and aortic endothelial cells synthesize heparan sulfate chains differing in charge density. There are two important conclusions from this work. (i) Endothelial cells from different blood vessels (i.e., vena cava and thoracic aorta) synthesize heparan sulfates which differ in negative charge and sulfation pattern. Specifically, aortic endothelial heparan sulfates have a higher negative charge than venous heparan sulfates. Differences are also observed in the nitrous acid degradation products of the heparan sulfates. (ii) Endothelial cells in culture retain the ability to synthesize different heparan sulfates in vitro after months of subculture under defined conditions. These results indicate that it is feasible to characterize heparan sulfates using cultured endothelial cells from a variety of vascular beds.  相似文献   

16.
Endothelial cells (ECs) build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. Blood vessel/nerve interactions, ultimately, play essential roles for the neurovascular network and brain function. With conventional molecular approaches, such coordinated interaction is likely due to complex interplay of neuroangiogenic factors and receptors. Aside from molecular regulation of neuroangiogenic factors, currently, cell-based approaches to investigate how blood vessels (or nerves) respond to nerves (or blood vessels) appropriately in the pathophysiological situation are gradually emerging. In order to define responsiveness and flexibility of the neurovascular network in response to the local need, the intercellular communication and coordinated interaction between the vascular and nervous systems need to be thought as a working unit. Based on the scale of the working unit which is in the millimeter range with respect to the physical distance of the neurovascular network, we propose to use a rather conceptual term "Millibiology". The millibiological approach for the coordinated interaction might bring us new paradigm to define neurovascular functions in the pathophysiological state.  相似文献   

17.
Adult bone marrow is a rich reservoir of tissue-specific pluripotent stem and progenitor cells. Accumulating evidence suggest that these cells have the potential of contributing to tissue revascularization and cardiac regeneration. Physiological stress results in the release of specific chemokines and cytokines that promote mobilization of stem cells to the peripheral circulation. Incorporation of these mobilized cells contributes to formation of functional vasculature and sets up stage for tissue regeneration. Vascular Endothelial Growth Factor (VEGF) through interaction with its receptors VEGFR2 and VEGFR1 expressed on endothelial and hematopoietic stem cells promote recruitment of these cells into the sites of tissue injury accelerating vascular healing. Similarly, subset of CD34 + marrow derived cells are mobilized and recruited to the ischemic myocardium, differentiating into cardiac and vascular cells, restoring cardiac function. Identification of cellular mediators and tissue specific chemocytokines that facilitate selective recruitment of marrow-derived stem and progenitor cells to specific organs, will open up new avenues to accelerate cardiovascular regeneration and tissue revascularization.  相似文献   

18.
Engineering blood vessels from stem cells: recent advances and applications   总被引:3,自引:0,他引:3  
Endothelial cells organized into blood vessels are critical for the formation and maintenance of most tissues in the body and are involved in regulating physiological processes such as angiogenesis, inflammation and thrombosis. Endothelial cells are of great research interest, because of their potential to treat vascular diseases and to stimulate the growth of ischaemic tissue. They can be used to engineer artificial vessels, repair damaged vessels, and to induce the formation of vessel networks in engineered tissues. For such clinical applications, proliferating human endothelial progenitor cells can be isolated from adult tissues or embryonic stem cells. Recently, these cells were successfully used to engineer single vessels and to stimulate capillary networks, both in vitro and in vivo.  相似文献   

19.
Endothelial cell functions   总被引:19,自引:0,他引:19  
Endothelial cells play a wide variety of critical roles in the control of vascular function. Indeed, since the early 1980s, the accumulating knowledge of the endothelial cell structure as well as of the functional properties of the endothelial cells shifted their role from a passive membrane or barrier to a complex tissue with complex functions adaptable to needs specific in time and location. Hence, it participates to all aspects of the vascular homeostasis but also to physiological or pathological processes like thrombosis, inflammation, or vascular wall remodeling. Some of the most important endothelial functions will be described in the following review and more specifically, their role in blood vessel formation, in coagulation and fibribolysis, in the regulation of vascular tone as well as their participation in inflammatory reactions and in tumor neoangiogenesis.  相似文献   

20.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号