首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inactivates ribosome by enzymatically depurinating the A4324 at the α-sarcin/ricin loop of 28S rRNA. We have shown in this and previous studies that TCS interacts with human acidic ribosomal proteins P0, P1 and P2, which constitute the lateral stalk of eukaryotic ribosome. Deletion mutagenesis showed that TCS interacts with the C-terminal tail of P2, the sequences of which are conserved in P0, P1 and P2. The P2-binding site on TCS was mapped to the C-terminal domain by chemical shift perturbation experiments. Scanning charge-to-alanine mutagenesis has shown that K173, R174 and K177 in the C-terminal domain of TCS are involved in interacting with the P2, presumably through forming charge–charge interactions to the conserved DDD motif at the C-terminal tail of P2. A triple-alanine variant K173A/R174A/K177A of TCS, which fails to bind P2 and ribosomal stalk in vitro, was found to be 18-fold less active in inhibiting translation in rabbit reticulocyte lysate, suggesting that interaction with P-proteins is required for full activity of TCS. In an analogy to the role of stalk proteins in binding elongation factors, we propose that interaction with acidic ribosomal stalk proteins help TCS to locate its RNA substrate.  相似文献   

2.
The Saccharomyces cerevisiae ribosomal stalk is made of five components, the 32-kDa P0 and four 12-kDa acidic proteins, P1alpha, P1beta, P2alpha, and P2beta. The P0 carboxyl-terminal domain is involved in the interaction with the acidic proteins and resembles their structure. Protein chimeras were constructed in which the last 112 amino acids of P0 were replaced by the sequence of each acidic protein, yielding four fusion proteins, P0-1alpha, P0-1beta, P0-2alpha, and P0-2beta. The chimeras were expressed in P0 conditional null mutant strains in which wild-type P0 is not present. In S. cerevisiae D4567, which is totally deprived of acidic proteins, the four fusion proteins can replace the wild-type P0 with little effect on cell growth. In other genetic backgrounds, the chimeras either reduce or increase cell growth because of their effect on the ribosomal stalk composition. An analysis of the stalk proteins showed that each P0 chimera is able to strongly interact with only one acidic protein. The following associations were found: P0-1alpha.P2beta, P0-1beta.P2alpha, P0-2alpha.P1beta, and P0-2beta.P1alpha. These results indicate that the four acidic proteins do not form dimers in the yeast ribosomal stalk but interact with each other forming two specific associations, P1alpha.P2beta and P1beta.P2alpha, which have different structural and functional roles.  相似文献   

3.
In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.  相似文献   

4.
The essential ribosomal stalk is formed in eukaryotes by a pentamer of two P1–P2 protein heterodimers and the P0 rRNA binding protein. In contrast to the highly stable prokaryotic complex, the P1 and P2 proteins in the eukaryotic stalk undergo a cyclic process of assembly and disassembly during translation that seems to modulate the ribosome activity. To better understand this process, the regions of the Saccharomyces cerevisiae P1α and P2β proteins that are directly involved in heterodimer formation and ribosome binding have been characterized using a series of P1α/P2β chimeras. The region required for a stable interaction with the ribosome is formed by the first three predicted α-helices in the N-terminal domain of both proteins. The same region is required for heterodimer formation in P2β but the third helix is dispensable for this association in P1α. It seems, therefore, that stable ribosome binding is more structurally demanding than heterodimerization. A fourth predicted α-helix in the N-terminal domain of P1α and P2β appears not to be involved in the assembly process but rather, it contributes to the conformation of the proteins by apparently restricting the mobility of their C-terminal domain and paradoxically, by reducing their activity. In addition, the study of P1/P2 chimeras showed that the C-terminal domains of these two types of protein are functionally identical and that their protein specificity is exclusively determined by their N-terminal domains.  相似文献   

5.
The stalk is a universal structure of the large ribosomal subunit involved in the function of translation factors. The bacterial stalk is highly stable but its stability is notably reduced in eukaryotes, favouring a translation regulatory activity of this ribosomal domain, which has not been reported in prokaryotes. The RNA-binding protein P0 plays a key role in determining the eukaryotic stalk activities, and characterization of the P0/RNA interaction is essential to understand the evolutionary process. Using a series of Saccharomyces cerevisiae-truncated proteins, a direct involvement of two N-terminal regions, I3-M58 and K81-V121, in the interaction of P0 with the ribosome has been shown. Two other conserved regions, R122-T149 and G162-T182, affect P0 interaction with other stalk components and the sensitivity to sordarin anti-fungals but are not essential for RNA binding. Moreover, P0 and a P0 fragment comprising only the first 121 amino acids show a similar in vitro affinity for the highly conserved 26S rRNA binding site. A protein chimera containing the first 165 amino acids of L10, the P0 bacterial counterpart, is able to complement the absence of P0 and also shows the same P0 RNA binding characteristics. Altogether, the results indicate that the affinity of the stalk RNA-binding protein for its substrate has been highly conserved, and changes in the stability of the interaction of P0 with the ribosome, which are essential for the new eukaryotic functions, result from the evolution of the overall stalk structure.  相似文献   

6.
The ribosomal stalk is essential for translation; however, its overall structure is poorly understood. Characterization of the region involved in the interactions between protein P0 and the 12 kDa acidic proteins P1 and P2 is fundamental to understand the assembly and function of this structure in the eukaryotic ribosome. The acidic protein content is important for the ribosome efficiency and affects the translation of specific mRNAs. By usage of a series of progressively truncated fragments of protein P0 in the two-hybrid test, a region between positions 213 and 250 was identified as the minimal protein part able to interact with the acidic proteins. Extensions at either end affect the binding capacity of the fragment either positively or negatively depending on the number of added amino acids. Deletions inside the binding region confirm its in vivo relevance since they drastically reduce the P0 interacting capacity with the 12 kDa acidic proteins, which are severely reduced in the ribosome when the truncated protein is expressed in the cell. Moreover, recombinant His-tagged P0 fragments containing the binding site and bound to Ni(2+)-NTA columns can form a complex with the P1 and P2 proteins, which is able to bind elongation factor EF2. The results indicate the existence of a region in P0 that specifically interacts with the acidic proteins. These interactions are, however, hindered by the presence of neighbor protein domains, suggesting the need for conformational changes in the complete P0 to allow the assembly of the ribosomal stalk.  相似文献   

7.
The yeast ribosomal stalk is formed by a protein pentamer made of the 38 kDa P0 and four 12 kDa acidic P1/P2. The interaction of recombinant acidic proteins P1 alpha and P2 beta with ribosomes from Saccharomyces cerevisiae D4567, lacking all the 12 kDa stalk components, has been used to study the in vitro assembly of this important ribosomal structure. Stimulation of the ribosome activity was obtained by incubating simultaneously the particles with both proteins, which were nonphosphorylated initially and remained unmodified afterward. The N-terminus state, free or blocked, did not affect either the binding or reactivating activity of both proteins. Independent incubation with each protein did not affect the activity of the particles, however, protein P2 beta alone was unable to bind the ribosome whereas P1 alpha could. The binding of P1 alpha alone is a saturable process in acidic-protein-deficient ribosomes and does not take place in complete wild-type particles. Binding of P1 proteins in the absence of P2 proteins takes also place in vivo, when protein P1 beta is overexpressed in S. cerevisiae. In contrast, protein P2 beta is not detected in the ribosome in the P1-deficient D67 strain despite being accumulated in the cytoplasm. The results confirm that neither phosphorylation nor N-terminal blocking of the 12 kDa acidic proteins is required for the assembly and function of the yeast stalk. More importantly, and regardless of the involvement of other elements, they indicate that stalk assembling is a coordinated process, in which P1 proteins would provide a ribosomal anchorage to P2 proteins, and P2 components would confer functionality to the complex.  相似文献   

8.
The ribosomal stalk is involved directly in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypepties and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes, the acidic components correspond to the 12 kDa P1 and P2 proteins, and the RNA binding component is protein P0. All these proteins are found to be phosphorylated in eukaryotic organisms. Previousin vitro data suggested this modification was involved in the activity of this structure. To confirm this possibility a mutational study has shown that phosphorylation takes place at a serine residue close to the carboxyl end of proteins P1, P2 and P0. This serine is part of a consensus casein kinase II phosphorylation site. However, by using a yeast strain carrying a temperature sensitive mutant, it has been shown that CKII is probably not the only enzyme responsible for this modification. Three new protein kinases, RAPI, RAPII and RAPIII, have been purified and compared with CKII and PK60, a previously reported enzyme that phosphorylates the stalk proteins. Differences among the five enzymes have been studied. It has also been found that some typical effects of the PKC kinase stimulate thein vitro phosphorylation of the stalk proteins. All the data available suggest that phosphorylation, although it is not involved in the interaction of the acidic proteins with the ribosome, affects ribosome activity and might participate in some ribosome regulatory mechanism. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   

9.
The lateral stalk of ribosome is responsible for kingdom-specific binding of translation factors and activation of GTP hydrolysis that drives protein synthesis. In eukaryotes, the stalk is composed of acidic ribosomal proteins P0, P1 and P2 that constitute a pentameric P-complex in 1: 2: 2 ratio. We have determined the solution structure of the N-terminal dimerization domain of human P2 (NTD-P2), which provides insights into the structural organization of the eukaryotic stalk. Our structure revealed that eukaryotic stalk protein P2 forms a symmetric homodimer in solution, and is structurally distinct from the bacterial counterpart L12 homodimer. The two subunits of NTD-P2 form extensive hydrophobic interactions in the dimeric interface that buries 2400 Å2 of solvent accessible surface area. We have showed that P1 can dissociate P2 homodimer spontaneously to form a more stable P1/P2 1 : 1 heterodimer. By homology modelling, we identified three exposed polar residues on helix-3 of P2 are substituted by conserved hydrophobic residues in P1. Confirmed by mutagenesis, we showed that these residues on helix-3 of P1 are not involved in the dimerization of P1/P2, but instead play a vital role in anchoring P1/P2 heterodimer to P0. Based on our results, models of the eukaryotic stalk complex were proposed.  相似文献   

10.
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.  相似文献   

11.
Ribosomal P0, P1, and P2 proteins, together with the conserved domain of 28 S rRNA, constitute a major part of the GTPase-associated center in eukaryotic ribosomes. We investigated the mode of assembly in vitro by using various truncation mutants of silkworm P0. When compared with wild type (WT)-P0, the C-terminal truncation mutants CDelta65 and CDelta81 showed markedly reduced binding ability to P1 and P2, which was offset by the addition of an rRNA fragment covering the P0.P1-P2 binding site. The mutant CDelta107 lost the P1/P2 binding activity, whereas it retained the rRNA binding. In contrast, the N-terminal truncation mutants NDelta21-NDelta92 completely lost the rRNA binding, although they retained P1/P2 binding capability, implying an essential role of the N terminus of P0 for rRNA binding. The P0 mutants NDelta6, NDelta14, and CDelta18-CDelta81, together with P1/P2 and eL12, bound to the Escherichia coli core 50 S subunits deficient in L10.L7/L12 complex and L11. Analysis of incorporation of (32)P-labeled P1/P2 into the 50 S subunits with WT-P0 and CDelta81 by sedimentation analysis indicated that WT-P0 bound two copies of P1 and P2, but CDelta81 bound only one copy each. The hybrid ribosome with CDelta81 that appears to contain one P1-P2 heterodimer retained lower but considerable activities dependent on eukaryotic elongation factors. These results suggested that two P1-P2 dimers bind to close but separate regions on the C-terminal half of P0. The results were further confirmed by binding experiments using chimeric P0 mutants in which the C-terminal 81 or 107 amino acids were replaced with the homologous sequences of the archaebacterial P0.  相似文献   

12.
Saccharomyces cerevisiae ribosomal stalk consists of five proteins: P0 protein, with molecular mass of 34 kDa, and four small, 11 kDa, P1A, P1B, P2A and P2B acidic proteins, which form a pentameric complex P0-(P1A-P2B)/(P1B-P2A). This structure binds to a region of 26S rRNA termed GTPase-associated domain and plays a crucial role in protein synthesis. The consecutive steps leading to the formation of the stalk structure have not been fully elucidated and the function of individual P-proteins in the assembling of the stalk and protein synthesis still remains elusive. We applied an integrated approach in order to examine all the P-proteins with respect to stalk assembly. Several in vitro methods were utilized to mimic protein self-organization in the cell. Our efforts resulted in reconstitution of the whole recombinant stalk in solution as well as on the ribosomal particle. On the basis of our analysis, it can be inferred that the P1A-P2B protein complex may be regarded as the key element in stalk formation, having structural and functional importance, whereas P1B-P2A protein complex is implicated in regulation of stalk function. The mechanism of quaternary structure formation could be described as a sequential co-folding/association reaction of an oligomeric system with P0-(P1A-P2B) protein complex as an essential element in the acquisition of a stable quaternary structure of the ribosomal stalk. On the other hand, the P1B-P2A complex is not involved in the cooperative stalk formation and our results indicate an increased rate of protein synthesis due to the latter protein pair.  相似文献   

13.
The lateral ribosomal stalk is responsible for the kingdom-specific binding of translation factors and activation of GTP hydrolysis during protein synthesis. The eukaryotic stalk is composed of three acidic ribosomal proteins P0, P1 and P2. P0 binds two copies of P1/P2 hetero-dimers to form a pentameric P-complex. The structure of the eukaryotic stalk is currently not known. To provide a better understanding on the structural organization of eukaryotic stalk, we have determined the solution structure of the N-terminal dimerization domain (NTD) of P1/P2 hetero-dimer. Helix-1, -2 and -4 from each of the NTD-P1 and NTD-P2 form the dimeric interface that buries 2200 A(2) of solvent accessible surface area. In contrast to the symmetric P2 homo-dimer, P1/P2 hetero-dimer is asymmetric. Three conserved hydrophobic residues on the surface of NTD-P1 are replaced by charged residues in NTD-P2. Moreover, NTD-P1 has an extra turn in helix-1, which forms extensive intermolecular interactions with helix-1 and -4 of NTD-P2. Truncation of this extra turn of P1 abolished the formation of P1/P2 hetero-dimer. Systematic truncation studies suggest that P0 contains two spine-helices that each binds one copy of P1/P2 hetero-dimer. Modeling studies suggest that a large hydrophobic cavity, which can accommodate the loop between the spine-helices of P0, can be found on NTD-P1 but not on NTD-P2 when the helix-4 adopts an 'open' conformation. Based on the asymmetric properties of NTD-P1/NTD-P2, a structural model of the eukaryotic P-complex with P2/P1:P1/P2 topology is proposed.  相似文献   

14.
The ribosomal stalk is formed by four acidic phosphoproteins in Saccharomyces cerevisiae, P1α, P1β, P2α and P2β, which form two heterodimers, P1α/P2β and P1β/P2α, that preferentially bind to sites A and B of the P0 protein, respectively. Using mutant strains carrying only one of the four possible P1/P2 combinations, we found a specific phenotype associated to each P1/P2 pair, indicating that not all acidic P proteins play the same role. The absence of one P1/P2 heterodimer reduced the rate of cell growth by varying degrees, depending on the proteins missing. Synthesis of the 60S ribosomal subunit also decreased, particularly in strains carrying the unusual P1α-P2α or P1β-P2β heterodimers, although the distinct P1/P2 dimers are bound with similar affinity to the mutant ribosome. While in wild-type strains the B site bound P1β/P2α in a highly specific manner and the A site bound the four P proteins similarly, both the A and B binding sites efficiently bound practically any P1/P2 pair in mutant strains expressing truncated P0 proteins. The reported results support that while most ribosomes contain a P1α/P2β-P0-P1β/P2α structure in normal conditions, the stalk assembly mechanism can generate alternative compositions, which have been previously detected in the cell.  相似文献   

15.
The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation.  相似文献   

16.
The eukaryotic acidic P1 and P2 proteins modulate the activity of the ribosomal stalk but playing distinct roles. The aim of this work was to analyze the structural features that are behind their different function. A structural characterization of Saccharomyces cerevisaie P1 alpha and P2 beta proteins was performed by circular dichroism, nuclear magnetic resonance, fluorescence spectroscopy, thermal denaturation, and protease sensitivity. The results confirm the low structure present in both proteins but reveal clear differences between them. P1 alpha shows a virtually unordered secondary structure with a residual helical content that disappears below 30 degrees C and a clear tendency to acquire secondary structure at low pH and in the presence of trifluoroethanol. In agreement with this higher disorder P1 alpha has a fully solvent-accessible tryptophan residue and, in contrast to P2 beta, is highly sensitive to protease degradation. An interaction between both proteins was observed, which induces an increase in the global secondary structure content of both proteins. Moreover, mixing of both proteins causes a shift of the P1 alpha tryptophan 40 signal, pointing to an involvement of this region in the interaction. This evidence directly proves an interaction between P1 alpha and P2 beta before ribosome binding and suggests a functional complementation between them. On a whole, the results provide structural support for the different functional roles played by the proteins of the two groups showing, at the same time, that relatively small structural differences between the two stalk acidic protein types can result in significant functional changes.  相似文献   

17.
The acidic ribosomal P proteins form a distinct protuberance on the 60 S subunit of eukaryotic ribosomes. In yeast this structure is composed of two heterodimers (P1alpha-P2beta and P1beta-P2alpha) attached to the ribosome via P0. Although for prokaryotic ribosomes the isolation of a pentameric stalk complex comprising the analogous proteins is well established, its observation has not been reported for eukaryotic ribosomes. We used mass spectrometry to examine the composition of the stalk proteins on ribosomes from Saccharomyces cerevisiae. The resulting mass spectra reveal a noncovalent complex of mass 77,291 +/- 7 Da assigned to the pentameric stalk. Tandem mass spectrometry confirms this assignment and is consistent with the location of the P2 proteins on the periphery of the stalk complex, shielding the P1 proteins, which in turn interact with P0. No other oligomers are observed, confirming the specificity of the pentameric complex. At lower m/z values the spectra are dominated by individual proteins, largely from the stalk complex, giving rise to many overlapping peaks. To define the composition of the stalk proteins in detail we compared spectra of ribosomes from strains in which genes encoding either or both of the interacting stalk proteins P1alpha or P2beta are deleted. This enables us to define novel post-translational modifications at very low levels, including a population of P2alpha molecules with both phosphorylation and trimethylation. The deletion mutants also reveal interactions within the heterodimers, specifically that the absence of P1alpha or P2beta destabilizes binding of the partner protein on the ribosome. This implies that assembly of the stalk complex is not governed solely by interactions with P0 but is a cooperative process involving binding to partner proteins for additional stability on the ribosome.  相似文献   

18.
真核生物酸性核糖体磷酸化蛋白(P0、P1、P2)位于核糖体60S大亚基上,它们在核糖体上共同组成一个向外侧凸出的五聚体的柄状复合物[P0·(P1·P2)2],该复合物在蛋白质合成延伸过程中起着重要作用.为了探讨单细胞真核生物核糖体柄状复合物的组成形式及在蛋白质合成中的作用,对八肋游仆虫(Euplotes octocarinatus)的P1进行了研究.通过生物信息学方法,分析八肋游仆虫基因组及转录组数据,找到2个酸性核糖体蛋白P1基因,从DNA 和cDNA中都扩增到这2个P1基因,表明八肋游仆虫酸性核糖体磷酸化蛋白P1确实存在2个亚型. 将2个基因克隆后分别构建重组表达质粒pET28a-P1A和pGEX-6P-1-P1B,在大肠杆菌BL21中获得高效表达.经镍柱和GST柱亲和层析后,获得较高纯度的八肋游仆虫酸性核糖体蛋白EoP1A和EoP1B,表达产物经Western印迹检测为阳性.Pull-down分析了EoP1A和EoP1B之间的相互作用.结果表明,游仆虫酸性核糖体磷酸化蛋白P1的2个亚型EoP1A和EoP1B之间存在相互作用.  相似文献   

19.
The ribosome has a distinct lateral protuberance called the stalk; in eukaryotes it is formed by the acidic ribosomal P-proteins which are organized as a pentameric entity described as P0-(P1-P2)(2). Bilateral interactions between P0 and P1/P2 proteins have been studied extensively, however, the region on P0 responsible for the binding of P1/P2 proteins has not been precisely defined. Here we report a study which takes the current knowledge of the P0 - P1/P2 protein interaction beyond the recently published information. Using truncated forms of P0 protein and several in vitro and in vivo approaches, we have defined the region between positions 199 and 258 as the P0 protein fragment responsible for the binding of P1/P2 proteins in the yeast Saccharomyces cerevisiae. We show two short amino acid regions of P0 protein located at positions 199-230 and 231-258, to be responsible for independent binding of two dimers, P1A-P2B and P1B-P2A respectively. In addition, two elements, the sequence spanning amino acids 199-230 and the P1A-P2B dimer were found to be essential for stalk formation, indicating that this process is dependent on a balance between the P1A-P2B dimer and the P0 protein.  相似文献   

20.
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号