首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Stockinger  U Pessara  R H Lin  J Habicht  M Grez  N Koch 《Cell》1989,56(4):683-689
Most native antigens require processing in a cellular compartment for efficient presentation to T helper cells. The cellular elements that permit processing are not known. We investigated a possible role of the class II MHC-associated invariant chains in antigen processing. Fibroblast cells that were transfected with class II genes were compared with fibroblasts supertransfected with the invariant chain gene for their capacity to present the fifth component of complement (C5) to C5-specific class II restricted T cell clones or influenza virus protein to a virus-specific T cell clone. Only fibroblasts supertransfected with the invariant chain gene were able to present native antigen, even at very low antigen concentration, whereas both fibroblast types could present cyanogen bromide-fragmented C5 or the virus peptide. Presentation of intact antigen but not of fragmented antigen was totally abrogated by treatment of fibroblasts with chloroquine. The invariant chain gene encodes two polypeptides, li31 and li41. Expression of either li31 or li41 was sufficient to render class II-expressing fibroblasts capable of presenting intact antigen.  相似文献   

2.
We have recently shown that the LC3/Atg8 lipidation machinery of macroautophagy is involved in the internalization of MHC class I molecules. Decreased internalization in the absence of ATG5 or ATG7 leads to MHC class I surface stabilization on dendritic cells and macrophages, resulting in elevated CD8+ T cell responses during viral infections and improved immune control. Here, we discuss how the autophagic machinery supports MHC class II restricted antigen presentation, while compromising MHC class I presentation via internalization and degradation.  相似文献   

3.
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.  相似文献   

4.
Liposome-encapsulated protein Ag were used to dissect the roles of various subcellular compartments in Ag processing for class I and class II MHC-restricted presentation. Macrophages exhibited efficient processing of Ag encapsulated in acid-resistant dioleoylphosphatidylcholine/dioleoylphosphatidylserine liposomes, which sequester their contents from potential endosomal processing events and release them only after delivery to lysosomes. Lysosomal processing was demonstrated for all four Ag studied (OVA, murine hemoglobin, bovine ribonuclease A, and hen egg lysozyme), establishing the recycling of immunogenic peptides from lysosomes after Ag processing. These acid-resistant liposomes did not engender class I processing. Ag encapsulated within acid-sensitive dioleoylphosphatidylethanolamine/palmitoylhomocysteine liposomes were also processed via the class II pathway. Of the four Ag encapsulated in liposomes, one, OVA, was tested for ability to stimulate a class I-specific response. OVA in acid-resistant liposomes did not engender a class I-specific response. In contrast, OVA encapsulated in acid-sensitive liposomes was presented by class I molecules, albeit less efficiently than it was presented by class II molecules. We interpret this to be the result of the release of a minor portion of the encapsulated Ag into the cytosol.  相似文献   

5.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

6.
Newly synthesized class II molecules of the major histocompatibility complex must be transported to endosomal compartments where antigens are processed for presentation to class II-restricted T cells. The invariant chain (Ii), which assembles with newly synthesized class II alpha- and beta-chains in the endoplasmic reticulum, carries one or more targeting signals for transport to endosomal compartments where Ii dissociates from alpha beta Ii complexes. Here we show that the transport route of alpha beta Ii complexes is regulated selectively by two forms of Ii (p33 and p35) that are generated by the use of alternative translation initiation sites. Using a novel quantitative surface arrival assay based on labeling with [6-3H]-D-galactose combined with biochemical modification at the cell surface with neuraminidase, we demonstrate that newly synthesized alpha beta Ii molecules containing the Ii-p33 isoform can be detected on the cell surface shortly after passage through the Golgi apparatus/trans-Golgi network. A substantial amount of these alpha beta Ii complexes are targeted to early endosomes either directly from the trans-Golgi network or after internalization from the cell surface before their delivery to antigen processing compartments. The fraction of alpha beta Ii complexes containing the p35 isoform of Ii with a longer cytosolic domain was not detected at the cell surface as determined by iodination of intact cells and the lack of susceptibility to neuraminidase trimming on ice. However, treatment with neuraminidase at 37 degrees C did reveal that some of the alpha beta Ii-p35 complexes traversed early endosomes. These results demonstrate that a fraction of newly synthesized class II molecules arrive at the cell surface as alpha beta Ii complexes before delivery to antigen processing compartments and that class II alpha beta Ii complexes associated with the two isoforms of Ii are sorted to these compartments by different transport routes.  相似文献   

7.
During biosynthesis, MHC class II molecules travel through the endocytic pathway and interact with antigenic peptides before their stable insertion in the plasma membrane. The process of class II association with these peptides and their final deposition at the cell surface are essential steps in boosting specific antibody responses. Therefore, the study of class II molecules is important in understanding how cell-biological events can direct an immune response.  相似文献   

8.
It has been demonstrated previously that mixed cell suspensions from the female reproductive tract consisting of human epithelial and stromal cells were capable of presenting foreign antigen to autologous T cells. There have been, however, no reported studies examining antigen presentation by isolated epithelial cells from the human female reproductive tract. It is now shown that freshly isolated epithelial cells from the uterine endometrium constitutively express MHC class II antigen and that class II was upregulated on cultured epithelium by interferon gamma (IFNγ). Using a highly purified preparation, it was demonstrated that these epithelial cells were able to process and present tetanus toxoid recall antigen driving autologous T cell proliferation. Cells isolated from the basolateral sub-epithelium stroma were also potent antigen presenting cells in this model system. Thus, isolated endometrial epithelial cells were able to directly process and present antigen to T cells and may be responsible for the transcytosis and delivery of antigen to professional antigen presenting cells found in the sub-epithelial stroma.  相似文献   

9.
10.
Major histocompatibility complex class II (MHC II) molecules are targeted to endocytic compartments, known as MIIC, by the invariant chain (Ii) that is degraded upon arrival in these compartments. MHC II acquire antigenic fragments from endocytosed proteins for presentation at the cell surface. In a unique and complex series of reactions, MHC II succeed in exchanging a remaining fragment of Ii for other protein fragments in subdomains of MIIC before transport to the cell surface. Here, the mechanisms regulating loading and intracellular trafficking of MHC II are discussed.  相似文献   

11.
Proteolysis is required for two steps of the MHC class II antigen-processing pathway, degradation of invariant chain and cleavage of protein antigens. Invariant chain dissociation from MHC is limited by a final proteolytic event which is tightly regulated in both temporal and tissue-specific ways. In contrast, enzymes involved in antigen proteolysis remain ill-defined. Gene 'knockout' experiments of housekeeping proteolytic enzymes suggest either that these enzymes do not play a major role, or that antigen proteolysis is too degenerate for this type of analysis. The possible role of two other proteinases, cathepsin E and aspariginyl endopeptidase is discussed. Finally, the data implicating antigen processing in repertoire generation is briefly considered. We conclude that selective regulation of endosomal proteolysis could have profound implications for control of immunity against infection, as well as in autoimmunity.  相似文献   

12.
13.
Neonates are clearly more susceptible to severe disease following infection with a variety of pathogens than are adults. However, the causes for this are unclear and are often attributed to immunological immaturity. While several aspects of immunity differ between adults and neonates, the capacity of dendritic cells in neonates to process and present antigen to CD8+ T cells remains to be addressed. We used human CD8+ T cell clones to compare the ability of neonatal and adult monocyte-derived dendritic cells to present or process and present antigen using the MHC class I pathway. Specifically, we assessed the ability of dendritic cells to present antigenic peptide, present an HLA-E-restricted antigen, process and present an MHC class I-restricted antigen through the classical MHC class I pathway, and cross present cell-associated antigen via MHC class I. We found no defect in neonatal dendritic cells to perform any of these processing and presentation functions and conclude that the MHC class I antigen processing and presentation pathway is functional in neonatal dendritic cells and hence may not account for the diminished control of pathogens.  相似文献   

14.
The biochemical processing of and Ag presentation by MHC class II molecules were examined in B cell lines derived from pairs of identical twins discordant for type 1 diabetes. MHC class II defects detected exclusively in cells derived from the twins with autoimmunity included increased rates of transport to and subsequent turnover at the cell surface, inadequate glycosylation, and a reduced display at the cell surface of antigenic peptides. These defects appeared to be secondary to a decreased abundance of the p35 isoform of the invariant chain (Ii), a human-specific chaperone protein for MHC class II normally generated by use of an alternative translation start site. Stable transfection of diabetic B cell lines with an Ii p35 expression vector corrected the defects in MHC class II processing and peptide presentation. A defect in the expression of Ii p35 may thus result in impairment of Ag presentation by MHC class II molecules and thereby contribute to the development of type 1 diabetes in at-risk genotypes.  相似文献   

15.
Dendritic cells (DCs) initiate primary immune responses by presenting pathogen-derived antigens in association with major histocompatibility Class II molecules (MHC II) to T cells. In DCs, MHC II is constitutively synthesized and loaded at endosomes with peptides from hydrolyzed endogenous proteins or exogenously acquired antigens. Whether peptide loaded MHC II (MHC II-p) is subsequently recruited to and stably expressed at the plasma membrane or degraded in lysosomes is determined by the status of the DC. In immature DCs, MHC II-p is ubiquitinated after peptide loading, driving its sorting to the luminal vesicles of multivesicular bodies. These luminal vesicles, and the MHC II-p they carry, are delivered to lysosomes for degradation. MHC II-p is inefficiently ubiquitinated in DCs that are activated by pathogens or inflammatory stimuli, thus allowing its transfer to and stable expression at the plasma membrane.  相似文献   

16.
The intracellular sites in which Ags delivered by the B cell receptor (BCR) are degraded and loaded onto class II molecules remain poorly defined. To address this issue, we generated wild-type and invariant chain (Ii)-deficient H-2k mice bearing BCR specific for hen egg lysozyme. Our results show that, 1) unlike Ags taken up from the fluid phase, Ii is required for presentation of hen egg lysozyme internalized through the BCR in a manner independent of the peptide analyzed; 2) BCR ligation induces intracellular accumulation of MHC class II molecules only in Ii-positive B cells; and 3) these class II molecules reach intracellular compartments where BCR targets exogenous Ag. No differences in expression of adhesion and costimulatory molecules or in the presentation of soluble peptides were detectable between Ii-positive and -negative B cells. Therefore, the BCR delivers its ligand to compartments containing MHC class II-Ii complexes and bypasses the Ii-independent presentation pathway. The linked roles of Ag internalization and B cell activation of the BCR leads to potent Ii-dependent presentation in splenic B cells.  相似文献   

17.
Antigen (Ag) capture and presentation onto major histocompatibility complex (MHC) class II molecules by B lymphocytes is mediated by their surface Ag receptor (B cell receptor [BCR]). Therefore, the transport of vesicles that carry MHC class II and BCR-Ag complexes must be coordinated for them to converge for processing. In this study, we identify the actin-associated motor protein myosin II as being essential for this process. Myosin II is activated upon BCR engagement and associates with MHC class II-invariant chain complexes. Myosin II inhibition or depletion compromises the convergence and concentration of MHC class II and BCR-Ag complexes into lysosomes devoted to Ag processing. Accordingly, the formation of MHC class II-peptides and subsequent CD4 T cell activation are impaired in cells lacking myosin II activity. Therefore, myosin II emerges as a key motor protein in BCR-driven Ag processing and presentation.  相似文献   

18.
MHC class II-restricted presentation of intracellular antigen.   总被引:17,自引:0,他引:17  
S Weiss  B Bogen 《Cell》1991,64(4):767-776
An endogenously produced immunoglobulin light chain (lambda 2(315] is processed and presented to T cells in association with major histocompatibility complex (MHC) class II molecules. Using transfectants producing variant forms of lambda 2(315) that are neither expressed on the cell surface nor secreted, we demonstrate that intracellular lambda 2(315), which has never been exported outside of the cell, is the source of processed lambda 2(315) idiotype. This challenges the currently accepted paradigm that endogenous antigens are only presented by MHC class I molecules. Variants of lambda 2(315) protein that are retained in the endoplasmic recticulum (ER) are also presented. Variants that are expressed in the cytosol as well as those that are transported into the nucleus rather than the ER are not presented. Thus, the ER is likely to be the processing compartment.  相似文献   

19.
The invariant chain (Ii) is a key player in regulating the MHC Class II antigen presentation pathway. Here we used site-directed mutagenesis to identify functionally important regions of the invariant chain in regulating antigen presentation function in transfected cells. Mutation of Ii residues 42-53 caused a defect in the presentation of the ovalbumin 247-265/A(k) epitope, but not in the inhibition of presentation of two hen egg lysozyme epitopes, HEL34-45/A(k) and HEL74-88/A(b), from endogenously expressed antigens. The mutation did not prevent ER translocation, trimerization, or association with MHC Class II molecules and had no obvious effect on endosomal targeting of Ii. It did, however, increase the half-life of the invariant chain, suggesting that sequences in this region influence the degradation of the invariant chain and as a consequence its function in antigen presentation.  相似文献   

20.
The proteasome and MHC class I antigen processing   总被引:9,自引:0,他引:9  
By generating peptides from intracellular antigens, which are then presented to T cells, the ubiquitin/26S proteasome system plays a central role in the cellular immune response. Under the control of interferon-gamma the proteolytic properties of the proteasome are adapted to the requirements of the immune system. Interferon-gamma induces the formation of immunoproteasomes and the synthesis of the proteasome activator PA28. Both alter the proteolytic properties of the proteasome complex and enhance proteasomal function in antigen presentation. Thus, a combination of several of regulatory events tunes the proteasome system for maximal efficiency in the generation of MHC class I antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号