首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ApoC-I has several different lipid-regulating functions including, inhibition of receptor-mediated uptake of plasma triglyceride-rich lipoproteins, inhibition of cholesteryl ester transfer activity, and mediation of tissue fatty acid uptake. Since little is known about the rate of production and catabolism of plasma apoC-I in humans, the present study was undertaken to determine the plasma kinetics of VLDL and HDL apoC-I using a primed constant (12 h) intravenous infusion of deuterium-labeled leucine. Data were obtained for 14 subjects: normolipidemics (NL, n = 4), hypertriglyceridemics (HTG, n = 4) and combined hyperlipidemics (CHL, n = 6). Plasma VLDL triglyceride (TG) levels were 0.59 +/- 0.03, 4.32 +/- 0.77 (P < 0.01 vs. NL), and 2.20 +/- 0.39 mmol/l (P < 0.01 vs. NL), and plasma LDL cholesterol (LDL-C) levels were 2.34 +/- 0.22, 2.48 +/- 0.26, and 5.35 +/- 0.48 mmol/l (P < 0.01 vs. NL), respectively. HTG and CHL had significantly (P < 0.05) increased levels of total plasma apoC-I (12.5 +/- 1.2 and 12.4 +/- 1.3 mg/dl, respectively) versus NL (7.9 +/- 0.6 mg/dl), due to significantly (P < 0.01) elevated levels of VLDL apoC-I (5.8 +/- 0.8 and 4.5 +/- 0.8 vs. 0.3 +/- 0.1 mg/dl). HTG and CHL also had increased rates of VLDL apoC-I transport (i.e., production) versus NL: 2.29 +/- 0.34 and 3.04 +/- 0.53 versus 0.24 +/- 0.11 mg/kg.day (P < 0.01), with no significant change in VLDL apoC-I residence times (RT): 1.16 +/- 0.12 versus 0.69 +/- 0.06 versus 0.74 +/- 0.17. Although HDL apoC-I concentrations were not significantly lower in HTG and CHL versus NL, HDL apoC-I rates of transport were inversely related to plasma and VLDL-TG levels (r = -0.63 and -0.62, respectively, P < 0.05). Our results demonstrate that increased levels of plasma and VLDL apoC-I in hypertriglyceridemic subjects (with or without elevated LDL-C levels) are associated with increased levels of plasma VLDL apoC-I production.  相似文献   

2.
Atorvastatin, a synthetic HMG-CoA reductase inhibitor used for the treatment of hyperlipidemia and the prevention of coronary artery disease, significantly lowers plasma cholesterol and low-density lipoprotein cholesterol (LDL-C) levels. It also reduces total plasma triglyceride and apoE concentrations. In view of the direct involvement of apoE in the pathogenesis of atherosclerosis, we have investigated the effect of atorvastatin treatment (40 mg/day) on in vivo rates of plasma apoE production and catabolism in six patients with combined hyperlipidemia using a primed constant infusion of deuterated leucine. Atorvastatin treatment resulted in a significant decrease (i.e., 30-37%) in levels of total triglyceride, cholesterol, LDL-C, and apoB in all six patients. Total plasma apoE concentration was reduced from 7.4 +/- 0.9 to 4.3 +/- 0.2 mg/dl (-38 +/- 8%, P < 0.05), predominantly due to a decrease in VLDL apoE (3.4 +/- 0.8 vs. 1.7 +/- 0.2 mg/dl; -42 +/- 11%) and IDL/LDL apoE (1.9 +/- 0.3 vs. 0.8 +/- 0.1 mg/dl; -57 +/- 6%). Total plasma lipoprotein apoE transport (i.e., production) was significantly reduced from 4.67 +/- 0.39 to 3.04 +/- 0.51 mg/kg/day (-34 +/- 10%, P < 0.05) and VLDL apoE transport was reduced from 3.82 +/- 0.67 to 2.26 +/- 0.42 mg/kg/day (-36 +/- 10%, P = 0.057). Plasma and VLDL apoE residence times and HDL apoE kinetic parameters were not significantly affected by drug treatment. Percentage decreases in VLDL apoE concentration and VLDL apoE production were significantly correlated with drug-induced reductions in VLDL triglyceride concentration (r = 0.99, P < 0.001; r = 0.88, P < 0.05, respectively, n = 6). Our results demonstrate that atorvastatin causes a pronounced decrease in total plasma and VLDL apoE concentrations and a significant decrease in plasma and VLDL apoE rates of production in patients with combined hyperlipidemia.  相似文献   

3.
Chronic alcohol intake is associated with an increase in fasting plasma high density lipoproteins (HDL). To study alcohol's acute effects on plasma lipoproteins, we measured plasma lipoprotein concentrations and activities of postheparin plasma lipases in nine normolipemic males after ingestion of 40 g of ethanol (as whiskey). After alcohol there was no change in lipoprotein lipase activity but hepatic lipase was decreased to 67% of baseline at 6 hr. There were associated increases in HDL phospholipids (12 mg/dl) and cholesterol (10 mg/dl) resulting in prominence of larger, lipid-enriched HDL particles. Changes were most pronounced in the HDL3 and HDL2a subclasses. Very low density lipoprotein (VLDL) phospholipids and cholesterol were also increased by 13 and 9 mg/dl, respectively, with no significant change in triglycerides. Changes in lipoproteins and lipase were largely reversed 10 hr after alcohol intake. The transient increases in VLDL and HDL lipids after alcohol may result in part from acute inhibition of hepatic lipase activity. The results suggest a role of hepatic lipase in the catabolism of phospholipids of VLDL and possibly HDL.  相似文献   

4.
The possibility that impaired removal of lipoprotein triglyceride from the circulation may be a participating factor in the hypertriglyceridemia of the obese Zucker rat was examined. We found no significant differences in the heparin-released lipoprotein lipase (LPL) activities of the adipose tissue, skeletal muscle, and heart (expressed per gram of tissue) from the lean and obese Zucker rats. Furthermore, the kinetic properties of adipose tissue and heart LPL from the lean and obese rats were similar, indicating that the catalytic efficiency of the enzyme was unaltered in the obese animals. The postheparin plasma LPL activities of lean and obese rats were also similar. However, the postheparin plasma hepatic triglyceride lipase (H-TGL) activity in the obese rats was elevated. The higher activity of H-TGL could not alleviate the hypertriglyceridemia in these animals. Since hypertriglyceridemia in the obese rats could also be due to the hepatic production of triglyceride-rich lipoproteins which are resistant to lipolysis, we therefore isolated very low density lipoproteins (VLDL) from lean and obese rat liver perfusates and examined their degradation by highly purified human milk LPL. Although certain differences were observed in hepatic VLDL triglyceride fatty acid composition, the kinetic patterns of LPL-catalyzed triglyceride disappearance from lean and obese rat liver perfusate VLDL were similar. The isolated liver perfusate VLDL contained sufficient apolipoprotein C-II for maximum lipolysis. These results indicate that impaired lipolysis is not a contributing factor in the genesis of hypertriglyceridemia in the genetically obese Zucker rat. The hyperlipemic state may be attributed to hypersecretion of hepatic VLDL and consequent saturation of the lipolytic removal of triglyceride-rich lipoproteins from the circulation.  相似文献   

5.
The very low density lipoprotein (VLDL) apolipoproteins from a Type IV hypertriglyceridemic Caucasian subject (plasma TG: 645 mg/dl) and his brother (plasma TG: 328 mg/dl) were separated by isoelectric focusing gel electrophoresis (IEF) and found to contain two isoforms of apoC-II, identified by immunoblot. These corresponded to normal apoC-II-1 (isoelectric point: pI 4.88) and a variant isoform (apoC-II-v, pI 4.74). The pI of C-II-v was not altered by neuraminidase treatment, indicating that it was not sialylated. The concentration of total immunoreactive C-II in VLDL was elevated (18 mg/dl vs normal; 5.0 +/- 2 mg/dl) but similar to that in other Type IV subjects. In VLDL, which contained 90% of the plasma immunoreactive apoC-II, the ratio (by IEF) of C-II-1:C-II-v was 2:1, whereas in high density lipoproteins (HDL) the ratio was 1:1. VLDL apoB turnover was measured after the pulse injection of 125I-labeled VLDL. VLDL apoB kinetic parameters for the proband and four Type IV subjects were similar: production rate, 28 mg/kg per day versus 30 mg/kg per day; fractional catabolic rate, 1.62.day-1 versus 1.96.day-1; and pool size, 17 mg/kg versus 18 mg/kg. The decline in VLDL triglyceride (TG) after the infusion of heparin (9,000 IU over 4 h) was also similar to that observed in Type IV subjects. In VLDL, the fractional catabolic rates of apoC-II-1 and C-II-v were similar (C-II-1: 0.31.day-1, C-II-v: 0.29.day-1) whereas in HDL, although similar to each other, the rates were greater than in VLDL (C-II-1: 0.48.day-1, C-II-v: 0.44.day-1). VLDL and HDL from the proband were normal in their ability to activate bovine skim milk lipase, compared to Type IV VLDL and HDL without C-II-v. Purified apoC-II-1 and apoC-II-v activated the milk lipase to a similar extent (at 1 microgram of C-II; C-II-1: 34 units/h, C-II-v: 35 units/h). Thus, apoC-II-v is a newly recognized isoform of apoC-II-1. It remains to be determined whether this mutation plays a role in the genesis of hypertriglyceridemia.  相似文献   

6.
In comparison to very low density lipoprotein (VLDL), chylomicrons are cleared quickly from plasma. However, small changes in fasting plasma VLDL concentration substantially delay postprandial chylomicron triglyceride clearance. We hypothesized that differential binding to lipoprotein lipase (LPL), the first step in the lipolytic pathway, might explain these otherwise paradoxical relationships. Competition binding assays of different lipoproteins were performed in a solid phase assay with purified bovine LPL at 4 degrees C. The results showed that chylomicrons, VLDL, and low density lipoprotein (LDL) were able to inhibit specific binding of (125)I-labeled VLDL to the same extent (85.1% +/- 13.1, 100% +/- 6.8, 90.7% +/- 23.2% inhibition, P = NS), but with markedly different efficiencies. The rank order of inhibition (K(i)) was chylomicrons (0.27 +/- 0.02 nm apoB) > VLDL (12.6 +/- 3.11 nm apoB) > LDL (34.8 +/- 11.1 nm apoB). By contrast, neither triglyceride (TG) liposomes, high density lipoprotein (HDL), nor LDL from patients with familial hypercholesterolemia were efficient at displacing the specific binding of (125)I-labeled VLDL to LPL (30%, 39%, and no displacement, respectively). Importantly, smaller hydrolyzed chylomicrons had less affinity than the larger chylomicrons (K(i) = 2.34 +/- 0.85 nm vs. 0.27 +/- 0.02 nm apoB respectively, P < 0.01). This was also true for hydrolyzed VLDL, although to a lesser extent. Chylomicrons from patients with LPL deficiency and VLDL from hypertriglyceridemic subjects were also studied. Taken together, our results indicate an inverse linear relationship between chylomicron size and K(i) whereas none was present for VLDL. We hypothesize that the differences in binding affinity demonstrated in vitro when considered with the differences in particle number observed in vivo may largely explain the paradoxes we set out to study.  相似文献   

7.
The purpose of this study was to determine the relationship between insulin resistance and apoB100 metabolism in African American males. Fifteen subjects, 33 +/- 7.6 years old, were divided into two groups, insulin-resistant (IR) or insulin-sensitive (IS), based on the sum of the plasma insulin concentrations during an oral glucose tolerance test. The IR group (n = 8) differed significantly from the IS group (n = 7) with respect to body mass index (BMI) (30.1 vs 23.1 kg/m2; P = 0.0003), fasting triglycerides, (118 vs 54 mg/dl, P = 0. 013), and total plasma apolipoprotein B100 (80 vs 59 mg/dl, P = 0.014). Significantly elevated apoB100 levels in the IR group were seen in very low density lipoprotein (VLDL) (5.1 vs 3.4 mg/dl, P = 0.045) and intermediate density lipoprotein (IDL) (18 vs 12 mg/dl, P = 0.017) but not in low density lipoprotein (LDL) (57 vs 46 mg/dl, P = 0.19). Total cholesterol, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apolipoprotein A-I, and blood pressure were not significantly different between the two groups. There was a high correlation between the sum of insulins during the oral glucose tolerance test and the BMI (rho = 0.88, P = 0.0001). In five IR and five IS subjects, apoB100 kinetics were determined in the fasting state using a bolus dose of deuteroleucine and multicompartmental modeling. IR subjects had significantly lower fractional catabolic rates (FCR) in the larger VLDL1 (-70%), the smaller VLDL2 (-71%), and the IDL (-53%) fractions. No significant differences in production rates were observed for any lipoprotein class. There was a significant correlation between the sum of insulins and the FCR of the apoB100 of VLDL1 (rho = -0.65, P = 0.05) and of IDL (rho = -0.85, P = 0.004). The correlation coefficient of the sum of insulins and the FCR of VLDL2 was -0.61 with P = 0.067. We conclude that in this population of African American males, IR is correlated with a decreased FCR of apoB100 in VLDL and IDL and elevated plasma levels of apoB and triglycerides (TG). These changes might be explained by decreased clearance of the TG-rich lipoproteins. We postulate that this may reflect decreased lipoprotein and/or hepatic lipase activity related to insulin resistance and its association with obesity.  相似文献   

8.
In diabetic hypercholesterolemic rabbits at plasma triglyceride concentrations of approximately 5000 mg/dl, 55% of plasma cholesterol (1400 mg/dl) was in lipoproteins with diameters larger than 75 nm (Sf greater than 400), 40% in smaller very low density and intermediate density lipoproteins, 4% in low density lipoproteins, and 1% in high density lipoproteins. Specific intimal clearance (nl/h.mg aortic cholesterol) of the giant Sf greater than 400 lipoproteins was about 4% of that of the low density lipoproteins. The data suggest that even very low density lipoproteins with diameters smaller than 75 nm were practically excluded from entering the arterial wall. Specific intimal clearance of low density lipoproteins in hypertriglyceridemic, diabetic cholesterol-fed rabbits was similar to that in normal cholesterol-fed rabbits, but low density lipoprotein concentrations in diabetic rabbits were low. Thus, at plasma triglyceride concentrations of approximately 5000 mg/dl, only 5% of plasma cholesterol may be readily available for infiltration of arteries. These results add further support to the hypothesis that hypertriglyceridemic, diabetic cholesterol-fed rabbits are protected against atherogenesis because the major part of plasma cholesterol is carried in large lipoproteins to which the artery is not very permeable.  相似文献   

9.
Optimally effective lipid-lowering agents should not only restore plasma lipids to normal levels but also correct potentially atherogenic alterations in lipoprotein composition and function often present in hyperlipidemic patients. Lovastatin, a competitive inhibitor of cholesterol biosynthesis, clearly lowers plasma cholesterol levels. Its effects on lipoprotein composition and cholesteryl ester transfer (CET), a key step in reverse cholesterol transport, however, are not known. Since abnormalities in CET and lipoprotein composition are present in patients with hypercholesterolemia, we studied these parameters of plasma lipoprotein transport in twelve hypercholesterolemic (HC; Type IIa) subjects (six male, six female) before and 2 months after lovastatin treatment (20 mg qd). Before lovastatin, the free cholesterol (FC)/lecithin (L) ratio in plasma, a new index of cardiovascular risk that reflects lipoprotein surface composition, was abnormally increased (1.18 +/- 0.26 vs controls 0.83 +/- 0.14; P less than 0.001) in very low density lipoproteins (VLDL) and high density lipoprotein-3 (HDL3), and remained so after treatment despite significant declines in whole plasma cholesterol (311.7 +/- 68.2 vs 215.6 +/- 27.2 mg/dl; P less than 0.001), low density lipoprotein (LDL)-cholesterol (206.3 +/- 47.9 vs 146.8 +/- 29.4; P less than 0.001), and apolipoprotein B (149 +/- 30 vs 110 +/- 17; P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Very low (VLDL) and low density lipoproteins (LDL) were isolated from plasma of patients with the E3/3 phenotype which were divided into three groups based on their plasma triglyceride content: low (TG<200 mg/dl, TG(l)), intermediate (200<300 mg/dl, TG(i)300 mg/dl, TG(h)). The protein density (PD) on the VLDL and LDL surface was calculated from lipoprotein composition and protein location was studied by tryptophan fluorescence quenching by I(-) anions at 25 degrees C and 40 degrees C. A comparison of the TG(h) with the TG(l) group revealed a significant (<0.05) increase of the PD parameter as much as 21% for VLDL, but not for LDL where this parameter did not change for any group; generally, PD(LDL) values were 3.2-3.8-fold lower than PD(VLDL). In accordance with this difference, the tryptophan accessibility f in VLDL vs. LDL was lower at both temperatures. There were temperature-induced changes of the f parameter in opposite directions for these lipoproteins. The difference in f value gradually decreased for VLDL in the direction TG(l)TG(i)TG(h) while for LDL there was a U-shaped dependence for these groups. The Stern-Volmer quenching constant K(S-V) which is sensitive to both temperature and viscosity, did not change for VLDL, but K(S-V)(LDL) was 2-3-fold higher for the TG(i) group compared to the other two. The efficiencies of VLDL and LDL binding to the LDL receptor (LDLr) in vitro were compared by solid-phase assay free of steric hindrance observed in cell binding. The maximal number of binding sites did not change for either type of particles and between groups. The association constant K(a) and apolipoprotein (apo) E/apoB mole ratio values all increased significantly for VLDL, but not for LDL, in comparison of the TG(i+h) with the TG(l) group. Based on VLDL and LDL concentrations in serum and on the affinity constant values obtained in an in vitro assay, VLDL concentrations corresponding to 50% inhibition of LDL binding (IC(50)) were calculated in an assumption of the competition of both ligands for LDLr in vivo; the mean values of IC(50) decreased 2-fold when plasma TG exceeded 200 mg/dl. The functional dependences of K(a)(VLDL), IC(50) and apoE content in VLDL (both fractional and absolute) and in serum on TG content in the whole concentration range studied were fitted to a saturation model. For all five parameters, the mean half-maximum values TG(1/2) were in the range 52-103 mg/dl. The efficiency of protein-protein interactions is suggested to differ in normolipidemic vs. HTG-VLDL and apoE content and/or protein density on VLDL surface may be the primary determinant(s) of the increased binding of HTG-VLDL to the LDL receptor. ApoCs may compete with apoE for the binding to the VLDL lipid surface as plasma triglyceride content increases. The possible competition of VLDL with LDL for the catabolism site(s) in vivo, when plasma TG increases, could explain the atherogenic action of TG-rich lipoproteins. Moreover, the 'dual action' hypothesis on anti-atherogenic action of apoE-containing high density lipoproteins (HDL) in vivo is suggested: besides the well-known effect of HDL as cholesteryl ester catabolic outway, the formation of a transient complex of apoE-containing discs appearing at the site of VLDL TG hydrolysis by lipoprotein lipase with VLDL particles proposed in our preceding paper promotes the efficient uptake of TG-rich particles; in hypertriglyceridemia due to the diminished HDL content this uptake seems to be impaired which results in the increased accumulation of the remnants of TG-rich particles. This explains the observed increase in cholesterol and triglyceride content in VLDL and LDL, respectively, due to the CETP-mediated exchange of cholesteryl ester and triglyceride molecules between these particles.  相似文献   

12.
Mechanisms responsible for hypertriglyceridemia in Tangier disease were elucidated by an analysis of the plasma post-heparin lipolytic activities and the structural and metabolic properties of very low (VLDL) and low (LDL) density lipoproteins. The levels of lipoprotein lipase activity in six Tangier patients were significantly lower (P less than 0.001) than in 40 control subjects (8.1 +/- 3.3 (+/- S.D.) vs. 14.1 +/- 3.7 units/ml). In contrast, the levels of hepatic triacylglycerol lipase were higher (P less than 0.01) than in normal controls (14.4 +/- 3.9 vs. 9.3 +/- 4.0 units/ml). Because kinetic parameters such as Km or Vmax cannot be obtained with naturally occurring triacylglycerol-rich lipoproteins, the pseudo-first-order rate constant (k1) of triacylglycerol hydrolysis was used to assess the effectiveness of triacylglycerol-rich lipoproteins as substrates for lipoprotein lipase. The k1 values for Tangier VLDL (k1 = 0.017 +/- 0.002 min-1) were significantly lower (P less than 0.001) than the k1 values (0.036 +/- 0.008 min-1) for control VLDL. Both the Tangier and control LDL2 are similar in their resistance to the action of lipoprotein lipase, as shown by their low k1 values (0.002 +/- 0.001 and 0.001 +/- 0.001 min-1, respectively). The major compositional difference between the lipoproteins of Tangier disease and normal subjects was a significant increase in the percent content of apolipoprotein A-II in all lipoprotein particles with d less than 1.063 g/ml, with the greatest increase occurring in VLDL and the lowest in LDL2. These results were interpreted as indicating that, in Tangier disease, there is a lower reactivity of VLDL with lipoprotein lipase which may in part be attributed to the abnormal apolipoprotein composition. This finding, in conjunction with the reduced levels of lipoprotein lipase activity, may explain the hypertriglyceridemia in Tangier disease.  相似文献   

13.
To evaluate the effect of dietary fat-induced alterations in triglyceride (TG) metabolism on plasma and very low-density lipoprotein (VLDL)-alpha-tocopherol, nine healthy males (mean +/- SEM, age: 36 +/- 3 years, BMI: 24.7 +/- 1.1) consumed a 35%-fat diet (control) for one week followed by a 15% low-fat, high-carbohydrate diet for 5 weeks. After each dietary phase, the subjects ingested an evening meal along with a 50 mg capsule of (2)H(6)-RRR-alpha-tocopheryl acetate; blood samples were drawn over a 24 h period while the subjects remained fasted. Low-fat feeding increased fasting plasma TG concentrations by 53% (116 +/- 27 to 178 +/- 32, mg/dl, p < 0.0001) primarily by reducing VLDL-TG clearance. Total plasma alpha-tocopherol concentrations (labeled + unlabeled) were unchanged (25.8 +/- 2.3 vs. 26.4 +/- 3.0 nmol/ml plasma) and no differences between the diets were observed for plasma (2)H(6)-alpha-tocopherol concentration (4.8 +/- 0.6 nmol/ml, for both diets) or enrichments (18.1 +/- 1.8% average for both diets). However, low-fat feeding significantly increased the amount of alpha-tocopherol in the VLDL fraction (43%, p = 0.04) in concert with elevations in VLDL-apoB and TG. The alpha-tocopherol and TG content of VLDL varied in parallel in individual subjects and fractional replacement rates and clearance of alpha-tocopherol and TG in VLDL were closely correlated. Kinetic parameters were decreased by 32-39% from high-fat to low-fat. These data suggest that vitamin E bioavailability is similar between a 15 and 35% fat diet, with a redistribution of alpha-tocopherol in lipoproteins occurring during low-fat feeding (increased in the VLDL fraction, reduced in the other lipoproteins), and transfer of alpha-tocopherol from VLDL depends upon TG removal from the particle, consistent with previous observations in vitro and in animal studies.  相似文献   

14.
Effects of fish oil on VLDL triglyceride kinetics in humans   总被引:8,自引:0,他引:8  
Dietary n-3 fatty acids (FAs) found in fish oils markedly lower plasma triglyceride (TG) and very low density lipoprotein (VLDL) levels in both normal and hypertriglyceridemic subjects. The present study examined the mechanism of this effect. Ten subjects with widely different plasma triglyceride levels (82 to 1002 mg/dl) were fed metabolically controlled diets containing 20% fat. The control diet contained a blend of cocoa butter and peanut oil (P/S = 0.8). The test diet contained fish oil (P/S = 1.1) and provided 10-17 g of n-3 FAs per day (depending on calorie intake). After 3 to 5 weeks of each diet, the kinetics of VLDL-TG were determined over a 48-h period after the injection of [3H]glycerol. The fish oil diet reduced the VLDL-TG synthetic rate from 23 +/- 14.3 (mean +/- SD) to 12.6 +/- 7.5 mg/h per kg ideal weight (P less than 0.005) and increased the fractional catabolic rate (FCR) for VLDL-TG from 0.23 +/- 0.12 to 0.38 +/- 0.16 h -1 (P less than 0.005). At the same time, there was a 66% reduction of plasma triglyceride levels, resulting largely from a 78% decrease in VLDL-TG levels (398 +/- 317 to 87 +/- 77 mg/dl; P less than 0.005). There was a strong correlation (r = 0.83; P less than 0.01) between the change in synthetic rates and pool sizes, but there was no correlation (r = 0.24; NS) between changes in FCRs and pool sizes. The VLDL cholesterol: triglyceride ratio increased during the n-3 diet suggesting that smaller VLDL particles were present. These particles would be expected to leave the VLDL fraction more rapidly than larger particles producing a higher FCR. We conclude that the hypotriglyceridemic effect of fish oil appears to be caused primarily by an inhibition of very low density lipoprotein-triglyceride synthesis, but an additional, independent effect upon VLDL catabolism cannot be ruled out.  相似文献   

15.
Apolipoprotein (apo) C-III and apoE play a central role in controlling the plasma metabolism of triglyceride-rich lipoproteins (TRL). We have investigated the plasma kinetics of total, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) apoC-III and apoE in normolipidemic (NL) (n = 5), hypertriglyceridemic (HTG, n = 5), and Type III hyperlipoproteinemic (n = 2) individuals. Apolipoprotein kinetics were investigated using a primed constant (12 h) infusion of deuterium-labeled leucine. HTG and Type III patients had reduced rates of VLDL apoB-100 catabolism and no evidence of VLDL apoB-100 overproduction. Elevated (3- to 12-fold) total plasma and VLDL apoC-III levels in HTG and Type III patients, although associated with reduced apoC-III catabolism (i.e., increased residence times (RTs)), were mainly due to increased apoC-III production (plasma apoC-III transport rates (TRs, mean +/- SEM): (NL) 2.05 +/- 0.22 (HTG) 4.90 +/- 0.81 (P < 0.01), and (Type III) 8.78 mg. kg(-)(1). d(-)(1); VLDL apoC-III TRs: (NL) 1.35 +/- 0. 23 (HTG) 5.35 +/- 0.85 (P < 0.01), and (Type III) 7.40 mg. kg(-)(1). d(-)(1)). Elevated total plasma and VLDL apoE levels in HTG (2- and 6-fold, respectively) and in Type III (9- and 43-fold) patients were associated with increased VLDL apoE RTs (0.21 +/- 0.02, 0.46 +/- 0. 05 (P < 0.01), and 1.21 days, NL vs. HTG vs. Type III, respectively), as well as significantly increased apoE TRs (plasma: (NL) 2.94 +/- 0.78 (HTG) 5.80 +/- 0.59 (P < 0.01) and (Type III) 11.80 mg. kg(-)(1). d(-)(1); VLDL: (NL) 1.59 +/- 0.18 (HTG) 4.52 +/- 0.61 (P < 0.01) and (Type III) 11.95 mg. kg(-)(1). d(-)(1)).These results demonstrate that hypertriglyceridemic patients, having reduced VLDL apoB-100 catabolism (including patients with type III hyperlipoproteinemia) are characterized by overproduction of plasma and VLDL apoC-III and apoE.  相似文献   

16.
Two groups of African green monkeys were fed diets containing 40% of calories as fat with half of the fat calories as either fish oil or lard. The fish oil-fed animals had lower cholesterol concentrations in blood plasma (33%) and low density lipoproteins (LDL) (34%) than did animals fed lard. Size and cholesteryl ester (CE) content of LDL, strong predictors of coronary artery atherosclerosis in monkeys, were significantly less for the fish oil-fed animals although the apoB and LDL particle concentrations in plasma were similar for both diet groups. We hypothesized that decreased hepatic CE secretion led to the smaller size and reduced CE content of LDL in the fish oil-fed animals. Hepatic CE secretion was studied using recirculating perfusion of monkey livers that were infused during perfusion with fatty acids (85% 18:1 and 15% n-3) at a rate of 0.1 mumol/min per g liver. The rate of cholesterol secretion was less (P = 0.055) for the livers of fish oil versus lard-fed animals (3.3 +/- 0.5 vs. 6.0 +/- 1.2 mg/h per 100 g, mean +/- SEM) but the rate of apoB secretion was similar for both groups (0.92 +/- 0.15 vs. 1.01 +/- 0.13 mg/h per 100 g, respectively). The hepatic triglyceride secretion rate was also less (P less than 0.05) for the fish oil-fed animals (8.3 +/- 2.5 vs. 18.3 +/- 4.4 mg/h per 100 g). Liver CE content was lower (P less than 0.006) in fish oil-fed animals (4.1 +/- 0.8 vs. 7.4 +/- 0.7 mg/g) and this was reflected in a lower (P less than 0.04) esterified to total cholesterol ratio of perfusate VLDL (0.21 +/- 0.045 vs. 0.41 +/- 0.06). The hepatic VLDL of animals fed fish oil had 40-50% lower ratios of triglyceride to protein and total cholesterol to protein. From these data we conclude that livers from monkeys fed fish oil secreted similar numbers of VLDL particles as those of lard-fed animals although the hepatic VLDL of fish oil-fed animals were smaller in size and relatively enriched in surface material and depleted of core constituents. Positive correlations between plasma LDL size and both hepatic CE content (r = 0.87) and hepatic VLDL cholesterol secretion rate (r = 0.84) were also found.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Plasma lipids, lipoproteins, and lipoprotein cholesterol levels were studied in a group (n = 8) of prepubertal growth hormone-deficient patients before and after growth hormone (GH) administration. Determination of plasma lipoproteins by a sensitive agarose gel electrophoretic technique demonstrated: (a) in the patients with two prebeta bands an intensification of the fast prebeta lipoprotein fraction after growth hormone administration; and (b) in the patients with one prebeta band the appearance of a second prebeta band after growth hormone administration. The mean (+/- SD) plasma triglyceride level before GH was 86 +/- 60 mg/dl and 158 +/- 95 mg/dl after GH (P less than 0.01). Mean (+/- SD) plasma cholesterol level before GH was 196 +/- 25 mg/dl and 174 +/- 28 mg/dl after GH (P less than 0.05). High-density lipoprotein cholesterol concentrations decreased significantly (P less than 0.001) from mean (+/- SD) 55 +/- 12 mg/dl before GH to 37 +/- 10 mg/dl after GH. Very-low-density lipoprotein cholesterol concentrations increased significantly (P less than 0.05) from mean (+/- SD) 13 +/- 12 mg/dl before GH to 23 +/- 15 mg/dl after GH. Low-density lipoprotein cholesterol concentrations decreased (N.S.) from mean (+/- SD) 123 +/- 15 mg/dl before GH to 114 +/- 15 mg/dl after GH. These lipid and lipoprotein changes could be mediated through the insulin antagonism, hyperinsulinemia, and a decrease in lipoprotein lipase activity caused by growth hormone.  相似文献   

18.
Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathway, we isolated VLDL subclasses from the d less than 1.006 g/ml fraction of normal and hypertriglyceridemic plasma by flotation through a discontinuous salt gradient for direct and competitive binding studies in cultured human fibroblasts. VLDL from the plasma of subjects with hypertriglyceridemia types 4 and 5 were at least as effective as normal LDL in competing for 125I-labeled LDL binding, uptake, and degradation when compared either on the basis of protein content or on a particle basis. By contrast, normolipemic Sf 60-400 VLDL were ineffective in competing with the degradation of 125I-labeled LDL, and Sf 20-60 VLDL (VLDL3) were less effective in reducing specific 125I-labeled LDL degradation than were LDL, consistent with their effects on HMG-CoA reductase activity. In direct binding studies, radiolabeled VLDL from hypertriglyceridemic but not normolipemic subjects were bound, internalized, and degraded with high affinity and specificity by normal fibroblasts. Uptake and degradation of iodinated hypertriglyceridemic VLDL Sf 100-400 showed a saturable dependence on VLDL concentration. Specific degradation plateaued at approximately 25 micrograms VLDL protein/ml, with a half maximal value at 6 micrograms/ml. The most effective competitor of hypertriglyceridemic VLDL uptake and degradation was hypertriglyceridemic VLDL itself. LDL were effective only at high concentrations. Uptake of normal VLDL by normal cells was a linear rather than saturable function of VLDL concentration. By contrast, cellular uptake of the smaller normal VLDL3 was greater than uptake of larger VLDL and showed saturation dependence. After incubation of normal VLDL with 125I-labeled apoprotein E, reisolated 125I-E-VLDL were as effective as LDL in suppression of HMG-CoA reductase activity, suggesting that apoE is involved in receptor-mediated uptake of large suppressive VLDL. We conclude that 1) hypertriglyceridemic VLDL Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by the high affinity LDL receptor-mediated pathway; 2) by contrast, normal VLDL, Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by nonspecific, nonsaturable routes; and 3) of the normal VLDL subclasses, only the smallest Sf 20-60 fraction is bound and internalized via the LDL pathway.  相似文献   

19.
The adaptive value of apolipoprotein B-48 (apoB-48), the truncated form of apoB produced by the intestine, in lipid metabolism remains unclear. We crossed human apoC-III transgenic mice with mice expressing either apoB-48 only (apoB48/48) or apoB-100 only (apoB100/100). Cholesterol levels were higher in apoB48/48 mice than in apoB100/100 mice but triglyceride levels were similar. Lipid levels were increased by the apoC-III transgene. However, triglyceride levels were significantly higher in apoB100/100C-III than in apoB48/48C-III mice (895 +/- 395 mg/dl vs. 690 +/- 252 mg/dl; P <0.01), whereas cholesterol levels were higher in the apoB48/48C-III mice than in apoB100/100C-III (144 +/- 35 mg/dl vs. 94 +/- 30 mg/dl; P <0.00001). Triglyceride clearance from VLDL was impaired to a greater extent in apoB100/100C-III vs. apoB100/100 mice than in apoB48/48C-III vs. apoB48/48 mice. Triglyceride secretion rates were no different in apoC-III transgenic mice than in their nontransgenic littermates. ApoB-48 triglyceride-rich lipoproteins were more resistant to the triglyceride-increasing effects of apoC-III but appeared more sensitive to the remnant clearance inhibition. Our findings support a coordinated role for apoB-48 in facilitating the delivery of dietary triglycerides to the periphery. Consistent with such a mechanism, glucose levels were significantly higher in apoB48/48 mice vs. apoB100/100 mice, perhaps on the basis of metabolic competition.  相似文献   

20.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号