首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We have constructed a replication-defective adenovirus vector encoding the yeast I- Sce I endonuclease under the control of the murine cytomegalovirus immediate-early gene promoter (AdM Sce I) for efficient delivery of this enzyme to mammalian cells. We present evidence of AdM Sce I-mediated I- Sce I protein expression and cleavage activity in replication-permissive 293 cells, and of cleavage of chromosomes in vivo in both 293 cells and in non-permissive human cells. We have exploited this system for the generation of chromosomes capped by artificial telomeric sequences in cells with integrated plasmids containing telomeric DNA arrays adjacent to an I- Sce I recognition site. The properties of the AdM Sce I virus described here make it a useful tool for studying biological processes involving induction of DNA breaks, recombination and gene targeting in cells grown in culture and in vivo.  相似文献   

2.
P Liang  M Glaser 《Gene》1989,80(1):21-28
An optimized system has been developed for the transfer of a mutant gene from the Escherichia coli chromosome to a plasmid carrying the wild type (wt) allele. The wt allele was first cloned into a low-copy-number, self-transmissible plasmid with a single EcoRI, HindIII, and BamHI site. The plasmid was then transferred to a mutant strain that had been previously transformed with a high-copy-number plasmid carrying the recA+ gene to allow efficient homologous recombination. A 15% frequency of homogenotization was obtained during cloning of an adk gene that encodes a temperature-sensitive adenylate kinase (AK). The mutant AK had decreased mobility on sodium dodecyl sulfate-polyacrylamide gels compared with the wt enzyme. This was due to a point mutation that changed leucine-107 in the wt enzyme to glutamine-107 in the mutant enzyme as determined by nucleotide sequencing.  相似文献   

3.
We describe a method for generating gene replacements and deletions in Escherichia coli. The technique is simple and rapid and can be applied to most genes, even those that are essential. What makes this method unique and particularly effective is the use of a temperature-sensitive pSC101 replicon to facilitate the gene replacement. The method proceeds by homologous recombination between a gene on the chromosome and homologous sequences carried on a plasmid temperature sensitive for DNA replication. Thus, after transformation of the plasmid into an appropriate host, it is possible to select for integration of the plasmid into the chromosome at 44 degrees C. Subsequent growth of these cointegrates at 30 degrees C leads to a second recombination event, resulting in their resolution. Depending on where the second recombination event takes place, the chromosome will either have undergone a gene replacement or retain the original copy of the gene. The procedure can also be used to effect the transfer of an allele from a plasmid to the chromosome or to rescue a chromosomal allele onto a plasmid. Since the resolved plasmid can be maintained by selection, this technique can be used to generate deletions of essential genes.  相似文献   

4.
In an attempt to understand the feasibility of future targeted genome optimization in agronomic crops, we tested the efficiency of homologous recombination-mediated sequence insertion upon induction of a targeted DNA double-strand break at the desired integration site in maize. By the development of an efficient tissue culture protocol, and with the use of an I- Sce I gene optimized for expression in maize, large numbers of precisely engineered maize events were produced in which DNA integration occurred very accurately. In a subset of events examined in detail, no additional deletions and/or insertions of short filler DNA at the integration site were observed. In 30%–40% of the recovered events, no traces of random insertions were observed. This was true for DNA delivery by both Agrobacterium and particle bombardment. These data suggest that targeted double-strand break-induced homologous recombination is a superior method to generate specific desired changes in the maize genome, and suggest targeted genome optimization of agronomic crops to be feasible.  相似文献   

5.
Yeast cells mutant for TOP3, the gene encoding the evolutionary conserved type I-5' topoisomerase, display a wide range of phenotypes including altered cell cycle, hyper-recombination, abnormal gene expression, poor mating, chromosome instability and absence of sporulation. In this report, an analysis of the role of TOP3 in the meiotic process indicates that top3Delta mutants enter meiosis and complete the initial steps of recombination. However, reductional division does not occur. Deletion of the SPO11 gene, which prevents recombination between homologous chromosomes in meiosis I division, allows top3Delta mutants to form viable spores, indicating that Top3 is required to complete recombination successfully. A topoisomerase activity is involved in this process, since expression of bacterial TopA in yeast top3Delta mutants permits sporulation. The meiotic block is also partially suppressed by a deletion of SGS1, a gene encoding a helicase that interacts with Top3. We propose an essential role for Top3 in the processing of molecules generated during meiotic recombination.  相似文献   

6.
We describe a simple method to select for transfer of mutant alleles from the Escherichia coli chromosome to a plasmid which formerly carried the wild-type (wt) allele. The wt allele on the plasmid is modified by introduction of a unique restriction site (e.g., XhoI) and transformed into a rec + strain carrying the mutant allele on the chromosome. Upon homogenotization, the efficiency of which was increased by UV irradiation of the transforming plasmid [Chattoraj et al., Gene 27 (1982) 213–222], plasmids carrying the mutant allele are formed which are resistant to XhoI. These plasmids are selected from the population by resistance to XhoI digestion coupled with the low transformation efficiency of linear DNA molecules in recA strain. The method is efficient and rapid and has particular advantages in situations where the mutant allele is difficult to detect by its phenotype.  相似文献   

7.
Abstract A transposon was constructed allowing the rapid restriction mapping of plasmids. This transporon, Tn5Map, contains a cleavage site for the I- Sce I endonuclease which recognizes an 18-mer. After iivo transposition of Tn5Map into the plasmid of interest, the plasmid is isolated and linearized with I- Sce I. Splinkers labelled with digoxygenin and complementary to the left and right end of the linearized molecule are added and ligated. After partial digestion of the splinkered molecules with the restriction enzyme of interest, separation of the cleavage products in an agarose gel, and Southern transfer, the labelled fragments are visualized by the addition of the chemiluminescent substrate AMPPD and alkaline phosphatase. The restriction map can be directly read from the bottom to the top of the gel.  相似文献   

8.
Summary We describe here a new method for the introduction of non-selectable alleles into Saccharomyces cerevisiae, gene replacement by donation. This method only requires the availability of an autonomously replicating, selectable plasmid containing the allele to be introduced into yeast. The plasmid is digested at a restriction site (or sites) within this allele, and introduced into yeast by transformation. In the course of double-strand break repair, the entering plasmid donates genetic information to the chromosome, replacing the chromosomal allele in a gene conversion-like event. Gene replacement events are identified by a phenotypic screen of the transformants. When necessary, the transforming plasmid may be subsequently lost by segregation during permissive growth. We have studied several parameters affecting the utility of this protocol as a method of gene replacement. Together with our previous results, the results show gene replacement by donation to be a useful, facile method, yielding gene replacement in up to 1.5% of transformants.  相似文献   

9.
We isolated a spontaneous suppressor mutant complementing the acid-sensitive phenotype of Streptococcus mutans strain Tn-1, a mutant previously generated in this laboratory, defective in the activity of the dgk-encoded putative undecaprenol kinase. A relatively simple genetic method was developed to identify the suppressor mutation, based on selection for transformants containing two closely linked markers: a selectable allele of the unknown suppressor gene and an antibiotic resistance gene introduced on a suicide plasmid at random sites into the chromosome via homologous recombination. While we have not actually identified the original suppressor mutation, another mutated gene restoring acid resistance has been isolated, which suggests a possible mechanism of suppression.  相似文献   

10.
Plasmids with the aadA gene from plasmid R100, which confers resistance to the aminoglycosides spectinomycin and streptomycin in Escherchia coli, can be introduced into wild-type Myxococcus xanthus, strain DK1622, by electroporation. Recombinant M. xanthus strains with integrated plasmids carrying the aadA gene acquire resistance to high levels of these antibiotics. Selection for aadA in M. xanthus can be carried out independently of, or simultaneously with, selection for resistance to kanamycin. The kinds and frequencies of recombination events observed between integrative plasmids with aadA and the M. xanthus chromosome are similar to those observed after the transformation of yeast. Cleavage of integrative plasmid DNA at a site adjacent to a region of homology between the plasmid and the M. xanthus genome favors the targeted disruption of M. xanthus genes by allele replacement.  相似文献   

11.
12.
Type II restriction enzymes are paired with modification enzymes that protect type II restriction sites from cleavage by methylating them. A plasmid carrying a type II restriction-modification gene complex is not easily replaced by an incompatible plasmid because loss of the former leads to cell death through chromosome cleavage. In the present work, we looked to see whether a chromosomally located restriction-modification gene complex could be replaced by a homologous stretch of DNA. We tried to replace the PaeR7I gene complex on the Escherichia coli chromosome by transducing a homologous stretch of PaeR7I-modified DNA. The replacement efficiency of the restriction-modification complex was lower than expected. Some of the resulting recombinant clones retained the recipient restriction-modification gene complex as well as the homologous DNA (donor allele), and slowly lost the donor allele in the absence of selection. Analysis of their genome-wide rearrangements by Southern hybridization, inverse polymerase chain reaction (iPCR) and sequence determination demonstrated the occurrence of unequal homologous recombination between copies of the transposon IS3. It was strongly suggested that multiple rounds of unequal IS3-IS3 recombination caused large-scale duplication and inversion of the chromosome, and that only one of the duplicated copies of the recipient PaeR7I was replaced.  相似文献   

13.
A procedure for markerless mutagenesis gene deletions was developed for the moderately halophilic model strain Halobacillus halophilus. Gene transfer was achieved by protoplast fusion and allelic replacement by a two-step procedure. In the first step the non-replicating plasmid integrated over the upstream or the downstream region of the target gene or operon into the chromosome to obtain single-crossover mutants. When cells were grown under non-selective conditions a second homologous recombination happened (segregation). This resulted in either the wild-type or the mutated allele. The method was used to delete the proHJA operon from H. halophilus. The mutant still produced proline and thus was not proline auxotroph but it completely lost the ability to produce proline as a compatible solute. However, growth was not impaired and the loss of the solute proline was compensated for by an increase in glutamate, glutamine and ectoine concentration. Expressions of the genes encoding the biosynthesis enzymes of theses solutes were upregulated and the activity of the key enzyme in glutamine biosynthesis, the glutamine synthetase, was increased. A model for the proline biosynthesis in the ΔproHJA mutant is discussed.  相似文献   

14.
K Nakagawa  N Morishima    T Shibata 《The EMBO journal》1992,11(7):2707-2715
Endo.SceI is a mitochondrial sequence-specific endonuclease which has multiple cutting sites. In order to examine the possible role of Endo.SceI in homologous recombination, we analyzed the mode of recombination upon mating using antibiotic resistance markers on the mitochondrial genome. The segregation of a marker located very close to one of the Endo.SceI cutting sites showed a disparity (polarized segregation, i.e. gene conversion). This gene conversion depended on the presence of the functional Endo.SceI gene. In vivo cutting of mitochondrial DNA upon mating was detected at the cutting site in the antibiotic marker region, which also depended on the Endo.SceI activity. These results suggest that mitochondrial recombination is induced by cleavage of mitochondrial DNA by this sequence-specific endonuclease. This is the first demonstration that a sequence-specific endonuclease with multiple cutting sites induces genetic recombination.  相似文献   

15.
The classic strategy to achieve gene deletion variants is based on double-crossover integration of nonreplicating vectors into the genome. In addition, recombination systems such as Cre-lox have been used extensively, mainly for eukaryotic organisms. This study presents the construction of a Cre-lox-based system for multiple gene deletions in Lactobacillus plantarum that could be adapted for use on gram-positive bacteria. First, an effective mutagenesis vector (pNZ5319) was constructed that allows direct cloning of blunt-end PCR products representing homologous recombination target regions. Using this mutagenesis vector, double-crossover gene replacement mutants could be readily selected based on their antibiotic resistance phenotype. In the resulting mutants, the target gene is replaced by a lox66-P(32)-cat-lox71 cassette, where lox66 and lox71 are mutant variants of loxP and P(32)-cat is a chloramphenicol resistance cassette. The lox sites serve as recognition sites for the Cre enzyme, a protein that belongs to the integrase family of site-specific recombinases. Thus, transient Cre recombinase expression in double-crossover mutants leads to recombination of the lox66-P(32)-cat-lox71 cassette into a double-mutant loxP site, called lox72, which displays strongly reduced recognition by Cre. The effectiveness of the Cre-lox-based strategy for multiple gene deletions was demonstrated by construction of both single and double gene deletions at the melA and bsh1 loci on the chromosome of the gram-positive model organism Lactobacillus plantarum WCFS1. Furthermore, the efficiency of the Cre-lox-based system in multiple gene replacements was determined by successive mutagenesis of the genetically closely linked loci melA and lacS2 in L. plantarum WCFS1. The fact that 99.4% of the clones that were analyzed had undergone correct Cre-lox resolution emphasizes the suitability of the system described here for multiple gene replacement and deletion strategies in a single genetic background.  相似文献   

16.
In hereditary retinoblastoma, different epidemiological studies have indicated a preferential paternal transmission of mutant retinoblastoma alleles to offspring, suggesting the occurrence of a meiotic drive. To investigate this mechanism, we analyzed sperm samples from six individuals from five unrelated families affected with hereditary retinoblastoma. Single-sperm typing techniques were performed for each sample by study of two informative short tandem repeats located either in or close to the retinoblastoma gene (RB1). The segregation probability of mutant RB1 alleles in sperm samples was assessed by use of the SPERMSEG program, which includes experimental parameters, recombination fractions between the markers, and segregation parameters. A total of 2,952 single sperm from the six donors were analyzed. We detected a significant segregation distortion in the data as a whole (P=.0099) and a significant heterogeneity in the segregation rate across donors (.0092). Further analysis shows that this result can be explained by segregation distortion in favor of the normal allele in one donor only and that it does not provide evidence of a significant segregation distortion in the other donors. The segregation distortion favoring the mutant RB1 allele does not seem to occur during spermatogenesis, and, thus, meiotic drive may result either from various mechanisms, including a fertilization advantage or a better mobility in sperm bearing a mutant RB1 gene, or from the existence of a defectively imprinted gene located on the human X chromosome.  相似文献   

17.
A collection of chl mutants characterized by decreased fidelity of chromosome transmission and by minichromosome nondisjunction in mitosis was examined for the ability to maintain nonessential dicentric plasmids. In one of the seven mutants analyzed, chl4, dicentric plasmids did not depress cell division. Moreover, nonessential dicentric plasmids were maintained stably without any rearrangements during many generations in the chl4 mutant. The rate of mitotic heteroallelic recombination in the chl4 mutant was not increased compared to that in an isogenic wild-type strain. Analysis of the segregation of a marked chromosome indicated that sister chromatid nondisjunction and sister chromatid loss contributed equally to chromosome malsegregation in the chl4 mutant. A genomic clone of CHL4 was isolated by complementation of the chl4-1 mutation and was physically mapped to the right arm of chromosome IV near the SUP2 gene. Nucleotide sequence analysis of CHL4 clone revealed a 1.4-kb open reading frame coding for a 53-kD predicted protein which does not have homology to published proteins. A strain containing a null allele of CHL4 is viable under standard growth conditions but has a temperature-sensitive phenotype (conditional lethality at 36°). We suggest that the CHL4 gene is required for kinetochore function in the yeast Saccharomyces cerevisiae.  相似文献   

18.
Bacteriophage lambda int gene is required for the integration of viral DNA into the chromosome of Escherichia coli. We have extensively purified the product of the int gene (Int) from a lysogen of E. coli that constitutively expresses this gene. Int was assayed by its ability to promote integrative recombination of supertwisted substrate DNA in vitro using a new method based on filter trapping of a recombinant product DNA. In order to catalyze integrative recombination, Int must be supplemented by other factors that can be extracted from bacterial host cells. By itself, purified Int does not demonstrate detectable endonuclease, exonuclease, or nicking-closing activities. However, Int does make stable complexes with double-stranded lambda-DNA containing an attachment site, the region at which recombination takes place. No stable complexes are observed between Int and lambda-DNA without an attachment site or between Int and DNA containing the bacterial site of integration. Int, therefore, appears to be a specificity element that relies on additional factor(s) to provide or activate the catalytic functions required for recombination.  相似文献   

19.
This report describes a novel method for complementation studies of defective herpes simplex virus (HSV) genes. Viral test gene and nonviral reporter gene cassettes were rapidly integrated into the HSV genome in a site-specific and reversible manner by using the P1 phage-based Cre-lox recombination system. Shuttle plasmids contained a functional loxP recombination site, an expressible form of the bacterial lacZ gene, and a copy of the wild-type glycoprotein B (gB) gene or double mutant gB allele containing both a temperature-sensitive (ts) mutation and a syncytium (syn)-forming mutation. A recipient viral genome, K delta T::lox1, was constructed from the HSV type 1 (syn) gB-deficient mutant virus, K delta T, by marker transfer of the loxP recombination site into the viral thymidine kinase locus. Shuttle plasmids of up to 12.9 kb in length were recombined with high efficiency (11 to 20%) into the K delta T::lox1 genome in cell-free, Cre-mediated recombination reactions. Expression of a functional wild-type or double mutant gB polypeptide complemented the nonfunctional polypeptide expressed from the deleted, normal gB locus and allowed production of either wild-type or Syn- plaques on Vero cells. The latter recombinant virus was also ts for growth. The ability to express viral genes from plasmids which can be shuttled into and out of the HSV genome in cell-free recombination reactions makes this a powerful method for performing genetic studies of the biologic properties of viral gene products.  相似文献   

20.
The argH gene encoding argininosuccinate lyase (ASL) of Methanococcus maripaludis was cloned on a 4.7-kb HindIII genomic fragment. The gene is preceded by a short open reading frame (ORF149), which encodes a polypeptide with an unknown function. The two genes are co-transcribed. The ASL of M. maripaludis shares a high amino acid identity with ASLs from both bacterial and eukaryal origins and was able to complement both an argH Escherichia coli mutant and an arg4 yeast mutant, showing its extraordinary evolutionary conservation. Attempts to create an argH auxotroph of M. maripaludis by disrupting the genomic allele were unsuccessful: although a knockout allele of argH was integrated into the M. maripaludis chromosome by homologous recombination, the intact copy was not excluded, suggesting that the argH gene is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号