首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T4 mutants in gene 17 accumulate particles which contain the main head protein in the cleaved form (gp23*) arranged in an unexpanded lattice (empty small particles), together with other expanded capsids (empty large particles). The isolated empty small particles can be transformed in vitro, by lowering the ionic strength, to capsid-like structures. This structural transformaton is not coupled to chemical modification of the structural proteins of the empty small particles. In contrast to unexpanded particles that are easily dissociated, the transformed structures are as resistant to dissociation as other T-even head-related particles with expanded lattice. Furthermore, the transformed particles are able to bind in vitro hoc and soc proteins, rendering capsids indistinguishable from the normal T4 capsids both morphologically and by their stability against denaturing agents. Our results indicate that the in vitro transformation of the empty small particles might mimic important and characteristic aspects of the in vivo maturation of T4 heads, thus suggesting a possible role of the "cleaved but unexpanded" particle in the maturation pathway of the T4 shell.  相似文献   

2.
A maturable head-related particle of bacteriophage T4 has been identified and characterized. This epsilon-particle has the same size as the prehead, but its shell is made of the cleaved product of gene 23 (gp23*). It contains internal matter, most likely the processed core proteins, which is lost or modified by experimental manipulations. It accumulates, together with partially filled ("grizzled") heads, in T4 infected cells that are treated with 9-aminoacridine. On sections of "well-preserved" cells the epsilon-particles are not identifiable with certainty; a more or less empty breakdown product of them becomes visible when cytoplasmic leakage is induced. The number of particles per cell is then in agreement with the biochemically and with the number of particles counted in lysates. Morphologically and biochemically, the isolated epsilon-particles closely resemble the empty small particles of 17- -infected cells described in previous papers of this series. Both are composed of gp23* and are still unexpanded, so that they are not yet able to bind the minor head proteins soc and hoc. We discuss the possibility of the epsilon-particle being an intermediate on the normal T4 wild-type head maturation pathway.  相似文献   

3.
We have isolated and characterized two types of particles produced in comparable amounts by mutants in gene 17: the empty large particle and the empty small particle. Dimensions, morphology, stability, and protein composition of the empty large particle are very similar to those of the capsids or empty heads of mature phage. The other type of particle (empty small particle) is very similar in dimensions and stability to the prehead, but differs in that it is composed of processed proteins (gp23, gp24, IpIII). Structural analysis has shown that the protein subunits of the empty small particles are arranged in an unexpanded type of lattice (11.2 to 11.3 nm), whereas the empty large particles have an expanded lattice (13 nm). The characterization of the empty small particle as being composed of cleaved proteins, but still unexpanded, shows that the expansion of the T4 head shell is not necessarily linked to the cleavage of the structural proteins.  相似文献   

4.
The shape and size of the bacteriophage T4 head are dependent on genes that determine the scaffolding core and the shell of the prohead. Mutants of the shell proteins affect mainly the head length. Two recently identified genes (genes 67 and 68) and one already known gene (gene 22), whose products are scaffold constituents, have been investigated. Different types of mutants were shown to strongly influence the proportion of aberrantly shaped particles. By model building, these shape variants could be represented as polyhedral bodies derived from icosahedra, through outgrowths along different polyhedral axes. The normal, prolate particle is obtained by elongation along a fivefold axis. The mutations of the three core genes (genes 67, 68, and 22) affect the width mainly by lateral outgrowths of the prolate particle, although small and large isometric particles are also found. Many of the aberrant particles are multitailed, suggesting a correlation between tail attachment sites and shape.  相似文献   

5.
We have identified the gene for a major component of the prohead core of bacteriophage T4, the 17K protein. The gene, which we call gene 68, lies between genes 67 and 21 in the major cluster of T4 head genes. All of the genes in this region of the T4 genome have overlapping initiation and termination codons with the sequence T-A-A-T-G. We present the DNA sequence of the gene and show that it codes for a protein containing 141 amino acids with an acidic amino-terminal half and a basic carboxyl terminus. Antibodies prepared against the 17K protein were used to show that it is cleaved by the phage-coded gp21 protease during head maturation and that most of the protein leaves the head after cleavage. A frameshift mutation of the gene was constructed in vitro and recombined back into the phage genome. The mutated phages had a drastically reduced burst size and about half of the particles produced were morphologically abnormal, having isometric rather than prolate heads. Thus, the 17K protein is involved in head shape determination but is only semi-essential for T4 growth.  相似文献   

6.
The functions of ten known late genes are required for the intracellular assembly of infectious particles of the temperate Salmonella phage P22. The defective phenotypes of mutants in these genes have been characterized with respect to DNA metabolism and the appearance of phage-related structures in lysates of infected cells. In addition, proteins specified by eight of the ten late genes were identified by sodium dodecyl sulfate/polyacrylamide gel electrophoresis; all but two are found in the mature phage particle. We do not find cleavage of these proteins during morphogenesis.The mutants fall into two classes with respect to DNA maturation; cells infected with mutants of genes 5, 8, 1, 2 and 3 accumulate DNA as a rapidly sedimenting complex containing strands longer than mature phage length. 5? and 8? lysates contain few phage-related structures. Gene 5 specifies the major head structural protein; gene 8 specifies the major protein found in infected lysates but not in mature particles. 1?, 2? and 3? lysates accumulate a single distinctive class of particle (“proheads”), which are spherical and not full of DNA, but which contain some internal material. Gene 1 protein is in the mature particle, gene 2 protein is not.Cells infected with mutants of the remaining five genes (10, 26, 16, 20 and 9) accumulate mature length DNA. 10? and 26? lysates accumulate empty phage heads, but examination of freshly lysed cells shows that many were initially full heads. These heads can be converted to viable phage by in vitro complementation in concentrated extracts. 16? and 20? lysates accumulate phage particles that appear normal but are non-infectious, and which cannot be rescued in vitro.From the mutant phenotypes we conclude that an intact prohead structure is required to mature the virus DNA (i.e. to cut the overlength DNA concatemer to the mature length). Apparently this cutting occurs as part of the encapsulation event.  相似文献   

7.
Several aspects of the terminal stages of T4 head maturation were investigated using ts and am mutants blocked at single steps of the assembly pathway. We had previously found that cells infected with mutants of gene 13, e.g., tsN38 and amE609, accumulated both stable (10 to 20%)- and fragile (80%)-filled head precursors (Hamilton and Luftig, 1972). Here we showed the following for such gene 13-defective, mutant-infected cells. (i) Using thin-section analysis the pool of phage precursor structures observed under nonpermissive conditions was one-third of that observed when the cells were cultured under permissive conditions. (ii) In order for complete conversion of the precursors into viable phage to occur, there were apparent requirements of metabolic energy, protein, and DNA synthesis. (iii) The intracellular DNA pool under nonpermissive conditions exhibited a 50% distribution between 63S (mature size) and 200 S (concatenate size) DNA, with the latter DNA serving as a precursor pool. Further, this DNA pool when spread onto a protein monolayer exhibited a dispersed array of DNA, strands around a core, which was less dense than that found for the greater than 1,000S DNA concatenate isolated from gene 49-defective infected cells. (iv) When precuations were taken to stabilize the head precursors, such as lysis of the cells into glutaraldehyde, there was a 30% increase in the yield of 1,200S filled heads. Correlating these results and previous results concerning gene 49-defective unfilled heads, we propose that there are several forms of gene 13 fragile head precursors which serve as intermediates between gene 49 unfilled heads and gene 13 stable filled heads. We cannot, however, rule out the possibility that all gene 13-defective heads represent a single class of unstable particles, which decay slowly. In either case, we have shown that gene 13-defective particles are unstable to some degree inside the cell and are highly unstable outside the cell; yet all particles can still be efficiently converted to phage in vivo.  相似文献   

8.
Isolation and characterization of bacteriophage T4 mutant preheads.   总被引:12,自引:8,他引:4       下载免费PDF全文
To determine the function of individual gene products in the assembly and maturation of the T4 prehead, we have isolated and characterized aberrant preheads produced by mutations in three of the T4 head genes. Mutants in gene 21, which codes for the T4 maturation proteases, produce rather stable preheads whose morphology and protein composition are consistent with a wild-type prehead blocked in the maturation cleavages. Mutants in gene 24 produce similar structures which are unstable because they have gaps at all of their icosahedral vertices except the membrane attachment site. In addition, greatly elongated "giant preheads" are produced, suggesting that in the absence of P24 at the vertices, the distal cap of the prehead is unstable, allowing abnormal elongation of broth the prehead core and its shell. Vertex completion by P24 is required to allow the maturation cleavages to occur, and 24- preheads can be matured to capsids in vitro by the addition of P24. Preheads produced by a temperature-sensitive mutant in gene 23 are deficient in core proteins. We show that the shell of these preheads has the expanded lattice characteristic of the mature capsid as well as the binding sites for the proteins hoc and soc, even though none of the maturation cleavage takes place. We also show that 21- preheads composed of wild-type P23 can be expanded in vitro without cleavage.  相似文献   

9.
Bacteriophage PRD1 contains DNA, 17 proteins, and lipid. The assembly pathway involves the formation of empty particles that contain lipid and all of the proteins of mature virions, with the possible exception of one. The major and minor capsid proteins, P3 and P5, occur as soluble multimers before they appear in the empty particles. Nonsense mutants of PRD1 that involve structural proteins of the virion other than P3 form particles that are missing only the defective protein. Those mutants that are unable to form P3 do not form particles. Mutations in two other genes that code for nonstructural proteins (P10, which is membrane bound, and P17, which is soluble) result in the absence of particles. Protein P2 is necessary for adsorption to host cells. Protein P9 is necessary for particle filling with DNA, whereas P20 and P22 are necessary for stable DNA packaging. Electron micrographs of infected cells confirmed the gradient analysis of particle formation. No free vesicles were observed in mutants that could not form complete empty particles, indicating that there are no free intermediate particles before the empty virions.  相似文献   

10.
We describe the aberrant phage multiplication of the triple conditional lethal mutant 43?(polymerase)· 30?(ligase)·46?(exonuclease) of bacteriophage T4D in which phage DNA replication is arrested but some late protein synthesis occurs (33). The nuclear disruption is indistinguishable from wild type. Forty-five empty small and empty large particles are assembled per cell when the multiplicity of infection (m.o.i.) is 100. This number corresponds closely to the 38 phage equivalents of cleaved major head protein determined biochemically. By reducing the m.o.i. the number of observable particles decreases, reaching 1–5 per cell at an m.o.i. of 5(+5). The total synthesis of phage related proteins is not significantly dependant on the m.o.i. The synthesis of late proteins is about 10% of that of wild type at high m.o.i. and decreases with the m.o.i. The different early and late proteins do not show the same relative proportions as in wild type and respond differently to an increased m.o.i. These and other results are discussed with respect to the role of phage DNA in prehead assembly and head maturation.  相似文献   

11.
Mutations of bacteriophage T5 were isolated which lack one or more of the natural single-chain interruptions that occur in the mature DNA of this virus. Interruption-deficient mutants were detected by screening survivors of hydroxylamine mutagenesis for altered DNA structure by electrophoresis in agarose slab gels. Over 60 independent mutants were isolated from a survey of approximately 800 phages particles. All of the mutants were viable and could be grouped into two classes. Mutants in one class lacked one of the localized sites where interruptions occur in T5 DNA. To date, mutants that affect five different sites have been obtained. Mutants in the other class were essentially free from interruptions or had a reduced frequency of interruptions throughout the genome. The members of this class included several amber mutants. Complementation tests indicated that at least two genes are required for the presence of interruptions in mature T5 DNA.  相似文献   

12.
The effect on phage morphogenesis of sus mutations in the cistrons coding for nonstructural proteins has been studied. Mutants in three cistrons analyzed that are involved in phage DNA synthesis, as well as in cistron 16 which codes for a late nonstructural protein, produce prolate capsids which are more rounded at the corners than complete phage heads and have an internal core; they contain the head proteins, the upper collar protein and protein p7, not present in mature phage particles. Mutants in cistron 7 do not produce capsids nor other phage-related structures; this result and the presence of p7 in phage capsids suggest an essential role in capsid assembly for this protein. The protein product of cistron 13 is probably needed for a stable DNA encapsulation since mutants in this cistron produce mainly DNA-free complete phage particles and only about 10% of uninfective DNA-containing complete phage. Cistron 15 codes for a late, partially dispensable, nonstructural protein which is present in the DNA-free capsids produced after infection with the delayed-lysis mutant sus14(1242), used as the wild-type control, or with mutants in cistrons 9, 11,12 and 13. Proteins p15 and p16 are probably involved in the encapsulation of viral DNA in a prohead.  相似文献   

13.
Four new mutants are described whose phenotypic expression affects the length of the head of bacteriophage T4D. All mutants produce some phenotypically normal phage particles. Mutant pt21-34 also produces at least two size classes of phage particle which have heads that are shorter than normal. The other three mutants, ptg19-2, ptg19-80, and ptg191, produce, in addition to phages with normal and with shorter-than-normal heads, giant phages with heads from 1.5 to at least 10 times the normal length. All mutations are clustered near gene 23. Giant phage particles have the following properties: they are infectious and contain and inject multiple genomes as a single continuous bihelical DNA molecule of greater-than-unit length. Their frequency, relative to the total plaque-former population, increases late in the infectious cycle. They have a normal diameter, variable length, and a buoyant density range in CsCl from equal to slightly greater than that of normal phage. The arrangement of capsomers is visible in the capsids, which are composed of cleaved gene 23 protein.  相似文献   

14.
Bacteriophage with double-stranded, linear DNA genomes package DNA into pre-assembled icosahedral procapsids through a unique vertex. The packaging vertex contains an oligomeric ring of a portal protein that serves as a recognition site for the packaging enzymes, a conduit for DNA translocation, and the site of tail attachment. Previous studies have suggested that the portal protein of bacteriophage P22 is not essential for shell assembly; however, when assembled in the absence of functional portal protein, the assembled heads are not active in vitro packaging assays. In terms of head assembly, this raises an interesting question: how are portal vertices defined during morphogenesis if their incorporation is not a requirement for head assembly? To address this, the P22 portal gene was cloned into an inducible expression vector and transformed into the P22 host Salmonella typhimurium to allow control of the dosage of portal protein during infections. Using pulse-chase radiolabeling, it was determined that the portal protein is recruited into virion during head assembly. Surprisingly, over-expression of the portal protein during wild-type P22 infection caused a dramatic reduction in the yield of infectious virus. The cause of this reduction was traced to two potentially related phenomena. First, excess portal protein caused aberrant head assembly resulting in the formation of T=7 procapsid-like particles (PLPs) with twice the normal amount of portal protein. Second, maturation of the PLPs was blocked during DNA packaging resulting in the accumulation of empty PLPs within the host. In addition to PLPs with normal morphology, smaller heads (apparently T=4) and aberrant spirals were also produced. Interestingly, maturation of the small heads was relatively efficient resulting in the formation of small mature particles that were tailed and contained a head full of DNA. These data suggest that incorporation of portal vertices into heads occurs during growth of the coat lattice at decision points that dictate head assembly fidelity.  相似文献   

15.
Defective heads present in extracts of bacteriophage T4 gene 16, 17, or 49 mutant-infected cells have been characterized. All appeared as empty shells when examined by negative-stain electron microscopy and showed essentially the same polypeptide pattern on sodium dodecyl sulfate-acrylamide gels. However, when analyzed by several other methods, gene 16- and 17-defective heads were shown to differ markedly from phage heads present in gene 49-defective extracts. First, the gene 16- and 17-defective structures were found to possess a large number of attached tails (50%, rather than about 5%). Second, they contained less nuclease-resistant deoxyribonucleic acid (DNA) (3 versus 18% of a phage equivalent), had a smaller sedimentation coefficient (240 versus 315S), and a lighter density (1.31 vs. 1.34 g/ml) than gene 49-defective heads. Third, they were not attached to the intracellular DNA pool through a deoxyribonuclease-sensitive linkage. Finally, 8-nm diameter capsomers were clearly revealed on the surface of many gene 16- and 17-defective structures. There was a total of 305 ± 25 capsomers per particle, which yielded an approximate molecular weight of 84 × 106 for these heads. The capsomers were presumably not seen on gene 49-defective heads because of the large amount (18%) of associated DNA.  相似文献   

16.
Mutants in T4 genes 46 and 47 exhibit early cessation of deoxyribonucleic acid (DNA) synthesis ("DNA arrest") and decreased synthesis of late proteins and phage. In addition, mutants in genes 46 and 47 fail to degrade host DNA to acidsoluble products. It is shown here that this complex phenotype can be partially suppressed by mutation of a T4 gene external to genes 46 and 47 which has been named das for "DNA arrest suppressor." The das mutations were discovered as third-site mutations in spontaneous pseudorevertants of [46, 47] mutants; the pseudorevertants make small plaques on Escherichia coli B, whereas [46, 47] mutants make none. The [das, 46, 47] triple mutant exhibits increased DNA, late protein, and viable phage production compared to the double mutant [46, 47]. The [das, 46, 47] mutant also degrades more of the host DNA to acid-soluble products than does the [46, 47] mutant. The suppressor effect of the das mutation appears to be gene-specific: it suppresses both amber and temperature-sensitive mutations in genes 46 and 47 and does not suppress amber mutations in any of the other genes tested. The [das] single mutants make normal-sized plaques on E. coli B and exhibit nearly normal host DNA degradation, DNA synthesis, late protein synthesis, and viable phage production. The das mutations either define a new gene between genes 33 and 34 or are special mutations within gene 33.  相似文献   

17.
Petite T4 phage particles have a shorter head than normal T4 phage and contain less DNA. They are not viable in single infections but are able to complement each other in multiply infected cells. Such particles normally make up 1 to 3% of T4 lysates. We show here that lysates of T4 grown on Escherichia coli H560 (end-A?, pol-A?) contain 33% of such petite particles. These particles are identical in physical and biological properties to those described previously, only their high frequency is abnormal. The frequency of petite particles in lysates grown on H560 is controlled by the presence or absence of the gene for DNA polymerase I (pol-A1) and apparently also a gene for endonuclease I (end-A). The involvement of these host DNA enzymes with T4 head morphology and DNA content indicates that DNA is directly involved in head morphogenesis. Such an involvement is incompatible with models of T4 head morphogenesis in which dimensionally stable, preformed empty heads are precursors of filled heads. The processing or repair of DNA apparently helps decide whether the assembly of T4 head subunits produces normal or petite heads.  相似文献   

18.
Bacteriophage T4 gene 17 amplification mutants (Hp17) selected by growth of gene 17 amber mutants on ochre suppressor strains of Escherichia coli carry two to more than sixfold tandem head-to-tail repeats of the gene 17-18 region (Wu & Black, 1987). We characterized the structures of Hp17 isolates by restriction enzyme mapping and Southern blot analysis. The left and right boundaries of the amplified sequences were mapped within genes 16 and gene 18 or 19, respectively. The TaqI-restriction fragments containing the novel junctions arising from fusion of the amplified gene were then cloned and sequenced. Three Hp17 mutants arose from rearrangement in one five base-pair (bp) block within a G + C-rich region of partial homology (24 bp with 4 mismatches) between genes 16 and 19. Moreover, an oligonucleotide probe showed that 190/191 mutants isolated had recombined within the 5 bp block, and other rearrangements within this 24 bp region were not detected. Only one anomalous Hp mutant rearranged elsewhere between genes 16 and 18 in a 14 bp homology region with one mismatch. Elimination of gene alt of phage T4 is required for isolation of Hp17 mutants, apparently because more DNA can be packaged into alt- heads. Requirements for the dispensable replication and recombination genes of T4 were probed; T4 topoisomerase (39, 52, 60), primase (58/61), and uvsX are required, whereas the host recA gene and T4 denV gene do not appear to be required for isolation of the Hp17 mutants. The evidence suggests an initiating sequence-specific rearrangement leads to the T4 Hp17 amplification mutants.  相似文献   

19.
Maturation of the head of bacteriophage T4. I. DNA packaging events   总被引:480,自引:0,他引:480  
Pulse-chase experiments in wild-type and mutant phage-infected cells provide evidence that the following particles called prohead I, II and III are successive precursors to the mature heads. The prohead I particles contain predominantly the precursor protein P23 and possibly P22 (mol. wt 31,000) and IP III (mol. wt 24,000) and have an s value of about 400 S. Concomitantly with the cleavage of most of P23 (mol. wt 55,000) to P231 (mol. wt 45,000), they are rapidly converted into prohead II particles which sediment with about 350 S. The prohead II particles contain, in addition to P231, the major constituents of the viral shella—a core consisting of proteins P22 and IP III. In cell lysates, prohead I and prohead II particles contain no DNA in a DNase-resistant form and are not bound to the replicative DNA. We cannot, however, positively rule out the possibility that these particles may have contained some DNA while in the cells.The prohead II particles are in turn converted into particles which sediment with about 550 S after DNase treatment (prohead III). During this conversion about 50% of normal DNA complement becomes packaged in a DNase-resistant form, and roughly 50% of the core proteins P22 and IP III are cleaved. In lysates the prohead III particles are attached to the replicative DNA. The prohead III particle appears to be the immediate precursor of the full mature head (1100 S). Cleavage of protein P22 to small polypeptides and conversion of IP III IP III1 are completed at this time. No precursor proteins are found in the full heads. Studies with various mutant phage showed that the prohead II to III conversion is blocked by mutations in genes 16 and 17 and that the conversion of the prohead III particles to the mature heads is blocked by mutations in gene 49. Cleavage of the head proteins, however, occurs normally in these mutant-infected cells. We conclude that the cleavage of the major component of the viral shell, P23, into P231 precedes the DNA packaging event, whereas cleavage of the core proteins P22 and IP III appears to be intimately linked to the DNA packaging event. Models relating the cleavage processes to DNA encapsulation are discussed.  相似文献   

20.
Three classes of particles have been identified in restrictive phi 29 suppressor-sensitive (sus) mutant infections of Bacillus subtilis, including DNA-containing heads or phage, prohead, and empty heads. Pulse-chase labeling experiments indicate that the prohead, the first particle assembled in 14-infected cells, is converted to DNA-filled heads and phi 29. In addition to the proteins Hd, P10, and F found in mature phi 29, the prohead contains a "core" protein P7 that exits as the prohead matures and appears to recycle during subsequent rounds of prohead assembly. Prohead-like structures accumulate in UV-irradiated cells and are present in restrictive infections with sus mutants of cistrons 9 and 16. Empty heads are observed only when infection results in the formation of DNA-containing particles; this and other evidence indicates that the empty heads are probably not true intermediates. Phage phi 29 assembly apparently occurs by a single pathway in which neck and tail components interact to stabilize the completed DNA-containing head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号