首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 46 毫秒
1.
氮肥对水曲柳和落叶松细根寿命的影响   总被引:2,自引:0,他引:2  
采用微根管技术研究了氮肥对水曲柳和落叶松细根生长、衰老和死亡的影响,探讨两树种细根寿命与氮有效性之间的相关关系.结果表明:林地施氮肥后,两树种细根数量都呈减少趋势,细根总体直径增加,分枝程度降低;氮肥使水曲柳细根存活率提高,细根中位值寿命延长105 d,而落叶松细根存活率对氮肥反应不敏感;施氮肥对细根寿命的延长效应主要体现在直径较小的一级根、表层(0~15 cm)根系和春夏季新生的细根,表明氮肥对高生理活性的细根
影响较强.  相似文献   

2.
水曲柳和落叶松细根寿命的估计   总被引:9,自引:3,他引:6       下载免费PDF全文
树木细根(直径≤2 mm)是控制树木与其周围环境进行能量交换和物质分配的主要器官,其寿命的长短决定了每年被分配到土壤中碳和养分的数量。我们使用微根管技术监测了水曲柳(Fraxinus mandshurica)和落叶松(Larix gmelinii)细根生长、衰老、死亡的动态过程,运用Kaplan-Meier方法估计细根存活率及中位值寿命(Median root lifespan,MRL),做存活曲线(Survival curve)。用对数秩检验(Log-rank test)比较不同树种、不同土壤层次、不同季节出生的细根寿命差异程度。研究结果表明,随观测期延长,细根存活率逐渐下降,在观测期内的各个时点上,水曲柳细根存活率显著高于落叶松(p<0.001),说明水曲柳细根寿命明显长于落叶松,两树种的MRL分别为111±7 d和77±4 d。无论是水曲柳还是落叶松,土壤下层(20~40 cm)的细根存活率始终高于上层(0~20 cm),差异程度均达到显著水平(p=0.001, p<0.001),落叶松上下两层的MRL分别为62±11 d 和95±11 d,水曲柳为111±6 d和124±20 d,这与土壤环境因子的垂直分布有关,下层土壤延长细根寿命。不同同龄根群(Root cohort)的细根寿命不同。落叶松夏季产生的细根存活率显著高于春季(p=0.042),中位值寿命分别是MRL=47±13 d,MRL=82±6 d。水曲柳不同细根同龄根群与落叶松具有相似的季节性,夏季产生的细根存活率在同一时间点上要显著高于春季(p=0.014)。  相似文献   

3.
落叶松和水曲柳人工林细根生长、死亡和周转   总被引:9,自引:3,他引:9       下载免费PDF全文
 细根周转是陆地生态系统碳分配格局与过程的核心环节,而细根周转估计的关键是了解细根的生长和死亡动态。该研究以18年生落叶松(Larix gmelinii)和水曲柳(Fraxi nus mandshurica)人工林为对象,采用微根管(Minirhizotron)技术对两树种0~40 cm深度的细根生长和死亡动态进行了为期1年的观测,研究了两树种细根在不同土层深度的生长与死亡动态、细根周转以及与土壤有效氮含量、土壤温度、大气温度和降水的关系。结果表明:1) 落叶松平均细根生长(Root length density production, RLDP)0.0045 mm•cm-2•d-1)明显低于水曲柳RLDP(0.0077 mm•cm-2•d-1)。两个树种细根平均RLDP在表层(0~10 cm)最大,而底层(30~40 cm)最小 ,两树种平均细根死亡(Root length density mortality, RLDM)也表现同样规律 。水曲柳春季生长的细根占41.7%,夏季占39.7%,而落叶松细根生长分别是24.0%和51.2%,水曲柳细根死亡主要发生在春季(34.3%) 和夏季(34.0%),而落叶松细根死亡主要发生在夏季和秋季(分别占28.5%和32.3%),两 树种细根生长与死亡在冬季均较小;2)落叶松细根年生长量(0.94 mm•cm-2•a-1)和年死亡量(0.72 mm•cm-2•a-1)明显低于水曲柳(1.52和1.21 mm•cm-2•a-1),两树种细根表层年生长量和年死亡量均最高,底层最低。落叶松细根年周转为3.1次•a-1(按年生长量计算)和2.4次•a-1(按年死亡量计算),相比较,水曲柳细根年周转分别为2.7次•a-1和2.2次•a-1;3)土壤有效氮含量、土壤温度、大气温度和降水综合作用影响细根生长和死亡动态,可以解释细根生长80%的变异和细根死亡95%以上的变异。  相似文献   

4.
  细根分解是陆地生态系统C和养分循环的重要环节。以往的细根分解研究以埋袋法的应用为主。然而, 由于埋袋法对分解材料的干扰以及对分解环境的改变使其很难揭示原位环境下根系的自然分解过程。该研究应用微根管(Minirhizotron)技术连续3年对水曲柳(Fraxinus mandshurica)和兴安落叶松(Larix gmelinii)细根的分解过程进行原位监测, 运用Kaplan–Meier方法估算细根分解的保存率及分解期中位值(即50%细根完全分解的时间, Median root decomposition time), 做分解曲线, 用对数秩检验(Log-rank test)方法分析不同树种、直径、根序及土层对细根保存率的影响。结果表明, 伴随时间延长, 细根的保存率逐渐下降, 兴安落叶松细根保存率的下降显著快于水曲柳(p<0.001), 两树种分解期中位值分别为(82±7) d 和(317±28) d; 不同直径等级(≤0.3、0.3~0.6、>0.6 mm)细根的分解速率不同, 两树种最长分解期中位值均出现在最细直径(≤0.3 mm)根中; 高级根分解速率显著低于一级根(p<0.05); 土壤上层分解速度快, 随着土壤深度增加细根分解速率减小。微根管技术为了解细根自然分解过程提供了有效途径。  相似文献   

5.
水曲柳和落叶松不同根序之间细根直径的变异研究   总被引:14,自引:3,他引:14       下载免费PDF全文
细根直径大小和根序高低对细根寿命和周转估计具有重要的影响,研究不同根序之间的直径变异对认识细根直径与根序的关系具有重要意义。该文根据Pregitzer等(2002)提供的方法,研究了位于东北林业大学帽儿山实验林场尖砬沟森林培育实验站17年生水曲柳(Fraxinus mandshurica)和落叶松(Larix gmelinii)人工林细根1~5级根序的平均直径的变化、直径的最小值和最大值范围、直径的变异系数。结果表明,水曲柳和落叶松细根直径<2 mm时,包含5个根序,随着根序由小到大的增加,细根直径也在增大。各根序平均直径之间,存在较大的差异。在同一根序内,细根直径范围很大,水曲柳和落叶松一级根最小直径均<0.20 mm,最大直径分别<0.50 mm(水曲柳)和<0.70 mm(落叶松)左右。2~3级根序直径最小值在0.20~0.30 mm之间,最大值≤1.0 mm。5级根直径最小值<1.0 mm,最大值超过2.0 mm。随着根序等级增加,直径变异系数增大。一级根序的直径平均变异系数<10%,2~3级根序直径平均变异系数在10%~15%左右,4~5级根序直径的平均变异系数在20%~30%之间。因此,在细根寿命与周转研究过程中,必须同时考虑直径和根序对细根的寿命估计的影响。  相似文献   

6.
水曲柳和落叶松细根形态及母根与子根比例关系   总被引:7,自引:0,他引:7       下载免费PDF全文
细根(直径〈2mm)的分枝是根系重要的结构特征,不同根序等级的细根在养分和水分吸收、C的消耗和寿命方面具有较大的差异,定量研究各根序等级之间的比例关系对认识细根死亡的顺序具有重要的理论意义。根据Pregitzer等2002年提供的方法,研究了17年生水曲柳(Fraxinus mandshurica Rupr.)和落叶松(Larix gmelinii Rupr.)人工纯林1-5级细根的直径、长度、比根长、生物量和数量。结果表明,两树种细根中1级根序的数量占总根系数量80%-90%,它们直径小、长度短、比根长高。随着根序等级(1级-5级)的增加细根直径增粗和长度增加、比根长减小。细根的数量和生物量在上下土层的分布受土壤资源有效性的影响。水曲柳5级根序-2级根序之间母根与子根的数量关系是1:3,落叶松是1:2-3。2级根序与1级根序之间母根与子根的数量关系,水曲柳是1:10—12,落叶松是1:8。如果当年生长的1级细根当中保持1:3的比例,将有65%-75%的1级细根死亡,占根系总数的55%~65%,总长度的40%-50%,以及总生物量的20%-30%。  相似文献   

7.
2004—2008年,采用微根管(minirhizotron)技术,对落叶松人工林细根生产和死亡进行连续动态观测,同时测定了温度(大气温度和土壤10 cm温度)和水分(降雨量和土壤10 cm深处含水量)的变化,研究细根生产、死亡的动态及其与温度和水分的关系.结果表明:落叶松细根年根长生产量在0.20~0.78 mm.cm-2,死亡量在0.26~0.72 mm.cm-2;2004—2006年细根年根长平均生产量(0.67 mm.cm-2)和死亡量(0.59 mm.cm-2)均高于2007—2008年细根年根长平均生产量和死亡量(0.37和0.39 mm.cm-2);在生长季内(5—10月),落叶松春末至夏季(6—7月)的细根生产量占全年产量的51%~68%,秋末(10月)仅占全年的1%~4%;而夏末(8月)和秋季(9—10月)细根死亡量占全年的59%~70%,早春(5月)占全年的1%~5%.相关分析表明,大气温度变化可以解释细根生产量66%的变异,而土壤10 cm深处温度解释24%,降雨量解释27%.细根的死亡量与土壤10 cm深处温度呈指数正相关.  相似文献   

8.
姜红英  谷加存  邱俊  王政权 《生态学杂志》2010,21(10):2465-2471
2004—2008年,采用微根管(minirhizotron)技术,对落叶松人工林细根生产和死亡进行连续动态观测,同时测定了温度(大气温度和土壤10 cm温度)和水分(降雨量和土壤10 cm深处含水量)的变化,研究细根生产、死亡的动态及其与温度和水分的关系.结果表明:落叶松细根年根长生产量在0.20~0.78 mm·cm-2,死亡量在0.26~0.72 mm·cm-2;2004—2006年细根年根长平均生产量(0.67 mm·cm-2)和死亡量(0.59 mm·cm-2)均高于2007—2008年细根年根长平均生产量和死亡量(0.37和0.39 mm·cm-2);在生长季内(5—10月),落叶松春末至夏季(6—7月) 的细根生产量占全年产量的51%~68%,秋末(10月)仅占全年的1%~4%;而夏末(8月)和秋季(9—10月)细根死亡量占全年的59%~70%,早春(5月)占全年的1%~5%.相关分析表明,大气温度变化可以解释细根生产量66%的变异,而土壤10 cm深处温度解释24%,降雨量解释27%.细根的死亡量与土壤10 cm深处温度呈指数正相关.  相似文献   

9.
根系具有高度的形态和生理功能异质性, 在森林生态系统碳和养分循环中起重要作用。根系分枝的顺序构成根序,是根系最基本的构型特征, 根序代表根系不同的发育阶段。然而, 目前直接测定不同根序细根生理功能的研究很少。以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)的细根为研究对象, 使用气相氧电极测定不同根序细根的呼吸速率, 探讨根系呼吸速率与其形态、结构和组织氮浓度的关系。结果表明: 落叶松和水曲柳细根的直径、根长和维管束直径均随着根序的增加(1–5级)而增加, 而比根长、组织氮浓度和呼吸速率随着根序的增加而降低, 各根序之间差异显著(P < 0.05); 1级根比根长最大、皮层组织发达、组织氮浓度最高且呼吸速率也最高, 其呼吸速率分别为17.57 nmolO2·g–1·s–1(落叶松)和18.80 nmolO2·g–1·s–1(水曲柳), 比5级根分别高148%(落叶松)和124%(水曲柳); 并且, 落叶松根的呼吸速率几乎有96%与根系组织氮浓度相关, 而水曲柳根的呼吸速率则有89%与根系组织氮浓度相关。上述结果说明, 细根的形态和生理功能异质性是紧密相连的, 低级根的形态、结构决定其功能是吸收养分和水, 而高级根的形态、结构决定其功能是运输和贮存养分。  相似文献   

10.
根系具有高度的形态和生理功能异质性,在森林生态系统碳和养分循环中起重要作用。根系分枝的顺序构成根序,是根系最基本的构型特征,根序代表根系不同的发育阶段。然而,目前直接测定不同根序细根生理功能的研究很少。以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)的细根为研究对象,使用气相氧电极测定不同根序细根的呼吸速率,探讨根系呼吸速率与其形态、结构和组织氮浓度的关系。结果表明:落叶松和水曲柳细根的直径、根长和维管束直径均随着根序的增加(1–5级)而增加,而比根长、组织氮浓度和呼吸速率随着根序的增加而降低,各根序之间差异显著(P〈0.05);1级根比根长最大、皮层组织发达、组织氮浓度最高且呼吸速率也最高,其呼吸速率分别为17.57nmolO2·g^–1·s^–1(落叶松)和18.80 nmolO2·g^–1·s^–1(水曲柳),比5级根分别高148%(落叶松)和124%(水曲柳);并且,落叶松根的呼吸速率几乎有96%与根系组织氮浓度相关,而水曲柳根的呼吸速率则有89%与根系组织氮浓度相关。上述结果说明,细根的形态和生理功能异质性是紧密相连的,低级根的形态、结构决定其功能是吸收养分和水,而高级根的形态、结构决定其功能是运输和贮存养分。  相似文献   

11.
Fine root turnover is a major pathway for car-bon and nutrient cycling in forest ecosystems. However, to estimate fine root turnover, it is important to first understand the fine root dynamic processes associated with soil resource availability and climate factors. The objectives of this study were: (1) to examine patterns of fine root production and mortality in different seasons and soil depths in the Larix gmelinii and Fraxinus man-dshurica plantations, (2) to analyze the correlation of fine root production and mortality with environmental factors such as air temperature, precipitation, soil temperature and available nitrogen, and (3) to estimate fine root turn-over. We installed 36 Minirhizotron tubes in six mono-specific plots of each species in September 2003 in the Mao'ershan Experimental Forest Station. Minirhizotron sampling was conducted every two weeks from April 2004 to April 2005. We calculated the average fine root length, annual fine root length production and mortality using image data of Minirhizotrons, and estimated fine root turnover using three approaches. Results show that the average growth rate and mortality rate in L. melinii were markedly smaller than in F. mandshurica, and were high-est in the surface soil and lowest at the bottom among all the four soil layers. The annual fine root production and mortality in F. mandshurica were significantly higher than in L. gmelinii. The fine root production in spring and summer accounted for 41.7% and 39.7% of the total annual production in F. mandshurica and 24.0% and 51.2% in L. gmelinii. The majority of fine root mortality occurred in spring and summer for F. mandshurica and in summer and autumn for L. gmelinii. The turnover rate was 3.1 a-1 for L. gmelinii and 2.7 a-1 for F. mandshurica. Multiple regression analysis indicates that climate and soil resource factors together could explain 80% of the varia-tions of the fine root seasonal growth and 95% of the seasonal mortality. In conclusion, fine root production and mortality in L. gmelinii and F. mandshurica have dif-ferent patterns in different seasons and at different soil depths. Air temperature, precipitation, soil temperature and soil available nitrogen integratively control the dynamics of fine root production, mortality and turnover in both species.  相似文献   

12.
微根管法和同位素法在细根寿命研究中的应用及比较   总被引:4,自引:4,他引:4  
细根的生产和周转在陆地生态系统的碳和养分循环中起着重要作用,并且对全球环境变化具有一定的指示意义。细根寿命是估计细根周转的关键,其长短决定了养分和碳消耗与循环的速度。由于采用的研究方法不同,导致所得细根寿命估计值存在较大差异,目前最新的同位素和微根管2种方法之间寿命估计值差异可达10倍以上。本文对这2种研究方法的原理和优点进行了阐述,并从细根定义、细根寿命理论分布假设、细根取样误差等方面对导致这2种方法研究结果存在差异的原因进行分析,以期有助于今后根系研究的发展。  相似文献   

13.
施肥对落叶松和水曲柳人工林土壤呼吸的影响   总被引:13,自引:0,他引:13       下载免费PDF全文
 以落叶松(Larix gmelinii)和水曲柳(Fraxinus mandshurica)人工林为研究对象,采用动态气室法(LI-6400-09叶室连接到LI-6400便携式CO2/H2O分析系统)对两种林分的土壤呼吸速率进行了观测,探讨了细根生物量、根中氮含量与土壤呼吸速率的关系,以及施肥对细根生物量、根中氮含量和土壤呼吸速率的影响。结果表明:1)施肥导致落叶松和水曲柳林分的活细根生物量降低18.4%和27.4%, 死细根生物量分别降低了34.8%和127.4 %;2)施肥使落叶松和水曲柳林地土壤呼吸速率与对照相比分别减少了34.9%和25.8%;3 )施肥对根中氮含量没有显著影响;4)落叶松和水曲柳林地的土壤呼吸与土壤温度表现出相同的季节变化,两种林分的土壤呼吸速率与地下5和10 cm处的温度表现出明显的指数关系 ,其相关性R2=0.93~0.98。土壤呼吸温度系数Q10的范围在2.45~3.29。 施肥处理对Q10没有产生影响,施肥处理导致细根生物量减少可能是引起林地土壤呼吸速率下降的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号